This two-part paper deals with the influence of high-pressure turbine (HPT) purge flows on the aerodynamic performance of turbine center frames (TCF). Measurements were carried out in a product-representative one and a half-stage turbine test setup. Four individual purge mass flows differing in flow rate, pressure, and temperature were injected through the hub and tip, forward and aft cavities of the unshrouded HPT rotor. Two TCF designs, equipped with nonturning struts, were tested and compared. In this first part of the paper, the influence of different purge flow rates (PFR) is discussed, while in the second part of the paper, the impact of the individual hub and tip purge flows on the TCF aerodynamics is investigated. The acquired measurement data illustrate that the interaction of the ejected purge flow with the main flow enhances the secondary flow structures through the TCF duct. Depending on the PFR, the radial migration of purge air onto the strut surfaces directly impacts the loss behavior of the duct. The losses associated with the flow close to the struts and in the strut wakes are highly dependent on the relative position between the HPT vane and the strut leading edge (LE), as well as the interaction between vane wake and ejected purge flow. This first-time experimental assessment demonstrates that a reduction in the purge air requirement benefits the engine system performance by lowering the TCF total pressure loss.

References

References
1.
McLean
,
C.
,
Camci
,
C.
, and
Glezer
,
B.
,
2001
, “
Mainstream Aerodynamic Effects Due to Wheelspace Coolant Injection in a High-Pressure Turbine Stage: Part I—Aerodynamic Measurements in the Stationary Frame
,”
ASME J. Turbomach.
,
123
(
4
), pp.
687
696
.
2.
Reid
,
K.
,
Denton
,
J.
,
Pullan
,
G.
,
Curtis
,
E.
, and
Longley
,
J.
,
2006
, “
The Effect of Stator-Rotor Hub Sealing Flow on the Mainstream Aerodynamics of a Turbine
,”
ASME
Paper No. GT2006-90838.
3.
Dahlqvist
,
J.
, and
Fridh
,
J.
,
2016
, “
Experimental Investigation of Turbine Stage Flow Field and Performance at Varying Cavity Purge Rates and Operating Speeds
,”
ASME
Paper-No. GT2016-57735.
4.
Jenny
,
P.
,
Abhari
,
R. S.
,
Rose
,
M. G.
,
Brettschneider
,
M.
,
Gier
,
J.
, and
Engel
,
K.
,
2011
, “
Low-Pressure Turbine End Wall Design Optimisation and Experimental Verification in the Presence of Purge Flow
,” International Symposium on Air Breathing Engines (ISABE), Gothenburg, Sweden, Sept. 12–16, ISABE Paper No. 1717.
5.
Regina
,
K.
,
Kalfas
,
A. I.
, and
Abhari
,
R. S.
,
2015
, “
Experimental Investigation of Purge Flow Effects on a High Pressure Turbine Stage
,”
ASME J. Turbomach.
,
137
(
4
), p.
041006
.
6.
Paniagua
,
G.
,
Dénos
,
R.
, and
Almeida
,
S.
,
2004
, “
Effect of the Hub Endwall Cavity Flow on the Flow-Field of a Transonic High-Pressure Turbine
,”
ASME J. Turbomach.
,
126
(
4
), pp.
578
586
.
7.
Ong
,
J.
,
Miller
,
R. J.
, and
Uchida
,
S.
,
2012
, “
The Effect of Coolant Injection on the Endwall Flow of a High Pressure Turbine
,”
ASME J. Turbomach.
,
134
(
5
), p.
051003
.
8.
Schuler
,
P.
,
Kurz
,
W.
,
Dullenkopf
,
K.
, and
Bauer
,
H.-J.
,
2010
, “
The Influence of Different Rim Seal Geometries on Hot-Gas Ingestion and Total Pressure Loss in a Low-Pressure Turbine
,”
ASME
Paper No. GT2010-22205.
9.
Schrewe
,
S.
,
Linker
,
C.
,
Krichbaum
,
A.
, and
Schiffer
,
H.-P.
,
2011
, “
Measurements of Rim Seal Mixing Processes in an Axial Two Stage Turbine
,” International Symposium on Air Breathing Engines (ISABE), Gothenburg, Sweden, Sept. 12–16, ISABE Paper No. 1720.
10.
Schrewe
,
S.
,
Werschnik
,
H.
, and
Schiffer
,
H. P.
,
2013
, “
Experimental Analysis of the Interaction Between Rim Seal and Main Annulus Flow in a Low Pressure Two Stage Axial Turbine
,”
ASME J. Turbomach.
,
135
(
5
), p.
051003
.
11.
Cui
,
J.
, and
Tucker
,
P.
,
2016
, “
Numerical Study of Purge and Secondary Flows in a Low-Pressure Turbine
,”
ASME J. Turbomach.
,
139
(
2
), p.
021007
.
12.
Pfau
,
A.
,
Schlienger
,
J.
,
Rusch
,
D.
,
Kalfas
,
A. I.
, and
Abhari
,
R. S.
,
2000
, “
Flow Interaction From the Exit Cavity of an Axial Turbine Blade Row Labyrinth Seal
,”
ASME J. Turbomach.
,
123
(
2
), pp.
342
352
.
13.
Pfau
,
A.
,
Schlienger
,
J.
,
Rusch
,
D.
,
Kalfas
,
A. I.
, and
Abhari
,
R. S.
,
2003
, “
Unsteady Flow Interactions Within the Inlet Cavity of a Turbine Rotor Tip Labyrinth Seal
,”
ASME J. Turbomach.
,
127
(
4
), pp.
679
688
.
14.
Rosic
,
B.
,
Denton
,
J. D.
, and
Curtis
,
E. M.
,
2008
, “
The Influence of Shroud and Cavity Geometry on Turbine Performance: An Experimental and Computational Study—Part I: Shroud Geometry
,”
ASME J. Turbomach.
,
130
(
4
), p.
041001
.
15.
Rosic
,
B.
,
Denton
,
J. D.
, and
Curtis
,
E. M.
,
2008
, “
The Influence of Shroud and Cavity Geometry on Turbine Performance: An Experimental and Computational Study—Part II: Exit Cavity Geometry
,”
ASME J. Turbomach.
,
130
(
4
), p.
041002
.
16.
Zlatinov
,
M. B.
,
Tan
,
C. S.
,
Montgomery
,
M.
,
Islam
,
T.
, and
Harris
,
M.
,
2012
, “
Turbine Hub and Shroud Sealing Flow Loss Mechanisms
,”
ASME J. Turbomach.
,
134
(
6
), p.
061027
.
17.
Göttlich
,
E.
,
2011
, “
Research on the Aerodynamics of Intermediate Turbine Diffusers
,”
Prog. Aerosp. Sci.
,
47
(
4
), pp.
249
279
.
18.
Zerobin
,
S.
,
Aldrian
,
C.
,
Peters
,
A.
,
Heitmeir
,
F.
, and
Göttlich
,
E.
,
2018
, “
Aerodynamic Performance of Turbine Center Frames With Purge Flows—Part II: Influence of Individual Hub and Tip Purge Flows
,”
ASME J. Turbomach.
, accepted.
19.
Steiner
,
M.
,
Zerobin
,
S.
,
Bauinger
,
S.
,
Heitmeir
,
F.
, and
Göttlich
,
E.
,
2017
, “
Development and Commissioning of a Purge Flow System in a Two Spool Test Facility
,” 12th European Conference on Turbomachinery Fluid dynamics & Thermodynamics, Stockholm, Sweden, Apr. 3–7, ETC Paper No.
ETC2017-115
.http://www.euroturbo.eu/publications/proceedings-papers/etc2017-115/
20.
Faustmann
,
C.
, and
Göttlich
,
E.
,
2014
, “
Aerodynamics and Acoustics of Turning Mid Turbine Frames in a Two Shaft Test Turbine
,”
ASME
Paper No. GT2014-25568.
21.
Gregory-Smith
,
D. G.
,
Graves
,
C. P.
, and
Walsh
,
J. A.
,
1988
, “
Growth of Secondary Losses and Vorticity in an Axial Turbine Cascade
,”
ASME J. Turbomach.
,
110
(
1
), pp.
1
8
.
22.
Chaluvadi
,
V.
,
Kalfas
,
A. I.
,
Banieghbal
,
M. R.
,
Hodson
,
H. P.
, and
Denton
,
J. D.
,
2001
, “
Blade Row Interaction in a High Pressure Turbine
,”
AIAA J. Propul. Power
,
17
(
4
), pp.
892
901
.
23.
Bagshaw
,
D. A.
,
Ingram
,
G. L.
,
Gregory-Smith
,
D. G.
, and
Stokes
,
M.
,
2008
, “
An Experimental Study of Three-Dimensional Turbine Blades Combined With Profiled Endwalls
,”
IMechE J. Power Energy
,
222
(
1
), pp.
103
110
.
24.
Persico
,
G.
,
Gaetani
,
P.
,
Dossena
,
V.
, and
D'Ippolito
,
G.
,
2009
, “
On the Definition of the Secondary Flow in Three-Dimensional Cascades
,”
IMechE J. Power Energy
,
223
(
6
), pp.
667
676
.
25.
Zerobin
,
S.
,
Bauinger
,
S.
,
Marn
,
A.
,
Peters
,
A.
,
Heitmeir
,
F.
, and
Göttlich
,
E.
,
2017
, “
The Unsteady Flow Field of a Purged High Pressure Turbine Based on Mode Detection
,”
ASME
Paper No. GT2017-63619.
26.
Tiedemann
,
M.
, and
Kost
,
F.
,
2001
, “
Some Aspects of Wake-Wake Interactions Regarding Turbine Stator Clocking
,”
ASME J. Turbomach.
,
123
(
3
), pp.
526
533
.
27.
Haldeman
,
C. W.
,
Dunn
,
M. G.
,
Barter
,
J. W.
,
Green
,
B. R.
, and
Bergholz
,
R. F.
,
2005
, “
Experimental Investigation of Vane Clocking in a One and One-Half Stage High Pressure Turbine
,”
ASME J. Turbomach.
,
127
(
3
), pp.
512
521
.
28.
Schennach
,
O.
,
Pecnik
,
R.
,
Paradiso
,
B.
,
Göttlich
,
E.
,
Marn
,
A.
, and
Woisetschläger
,
J.
,
2008
, “
The Effect of Vane Clocking on the Unsteady Flow Field in a One-and-a-Half Stage Transonic Turbine
,”
ASME J. Turbomach.
,
130
(
3
), p.
031022
.
You do not currently have access to this content.