The phenomena prior to rotating stall were investigated in a high-speed compressor test rig using optical and pneumatic measurement techniques. A number of throttling procedures were performed at transonic and subsonic speedlines with the aim to detect the unsteady effects initiating rotating stall or large amplitude blade vibrations. At transonic speed, radial vortices traveling around the circumference were detected in the upstream part of the rotor using phase-locked particle-image-velocimetry (PIV) measurements above 92% span and unsteady wall pressure measurements. When these radial vortices impinge on a blade leading edge (LE), they cause a forward spill of fluid around the LE. The effects are accompanied by a large-scale vortex breakdown in the blade passage leading to immense blockage in the endwall region. At subsonic speeds, the observed flow phenomena are similar but differ in intensity and structure. During the throttling procedure, blade vibration amplitudes were monitored using strain gauges (SG) and blade tip timing instrumentation. Nonsynchronous blade vibrations in the first torsional eigenmode were measured as the rotor approached stall. Using the different types of instrumentation, it was possible to align the aerodynamic flow features with blade vibration levels. The results show a clear correlation between the occurrence of radial vortices and blade vibrations.

References

References
1.
Camp
,
T. R.
, and
Day
,
I. J.
,
1998
, “
A Study of Spike and Modal Stall Phenomena in a Low-Speed Axial Compressor
,”
ASME J. Turbomach.
,
120
(
3
), pp.
393
401
.
2.
Inoue
,
M.
,
Kuroumaru
,
M.
,
Tanino
,
T.
, and
Furukawa
,
M.
,
2000
, “
Propagation of Multiple Short-Length-Scale Stall Cells in an Axial Compressor Rotor
,”
ASME J. Turbomach.
,
122
(
1
), pp.
45
54
.
3.
Yamada
,
K.
,
Kikuta
,
H.
,
Iwakiri
,
K.-I.
,
Furukawa
,
M.
, and
Gunjishima
,
S.
,
2012
, “
An Explanation for Flow Features of Spike-Type Stall Inception in an Axial Compressor Rotor
,”
ASME J. Turbomach.
,
135
(
2
), p.
021023
.
4.
Pullan
,
G.
,
Young
,
A. M.
,
Day
,
I. J.
,
Greitzer
,
E. M.
, and
Spakovszky
,
Z. S.
,
2015
, “
Origins and Structure of Spike-Type Rotating Stall
,”
ASME J. Turbomach.
,
137
(
5
), p.
051007
.
5.
Vo
,
H. D.
,
Tan
,
C. S.
, and
Greitzer
,
E. M.
,
2008
, “
Criteria for Spike Initiated Rotating Stall
,”
ASME J. Turbomach.
,
130
(
1
), pp.
11023
11029
.
6.
Schlechtriem
,
S.
, and
Lötzerich
,
M.
,
1997
, “Breakdown of Tip Leakage Vortices in Compressors at Flow Conditions Close to Stall,”
ASME
Paper No. 97-GT-041.
7.
Furukawa
,
M.
,
Inoue
,
M.
,
Saiki
,
K.
, and
Yamada
,
K.
,
1999
, “
The Role of Tip Leakage Vortex Breakdown in Compressor Rotor Aerodynamics
,”
ASME J. Turbomach.
,
121
(
3
), pp.
469
480
.
8.
März
,
J.
,
Hah
,
C.
, and
Neise
,
W.
,
2002
, “
An Experimental and Numerical Investigation Into the Mechanisms of Rotating Instability
,”
ASME J. Turbomach.
,
124
(
3
), pp.
367
374
.
9.
Kielb
,
R. E.
,
Barter
,
J. W.
,
Thomas
,
J. P.
, and
Hall
,
K. C.
,
2003
, “Blade Excitation by Aerodynamic Instabilities: A Compressor Blade Study,”
ASME
Paper No. GT2003-38634.
10.
Dodds
,
J.
, and
Vahdati
,
M.
,
2015
, “
Rotating Stall Observations in a High Speed Compressor—Part I: Experimental Study
,”
ASME J. Turbomach.
,
137
(
5
), p.
051002
.
11.
Hah
,
C.
,
2016
, “Effects of Double-Leakage Tip Clearance Flow on the Performance of a Compressor Stage With a Large Rotor Tip Gap,”
ASME
Paper No. GT2016-56050.
12.
Young
,
A.
,
Day
,
I.
, and
Pullan
,
G.
,
2012
, “
Stall Warning by Blade Pressure Signature Analysis
,”
ASME J. Turbomach.
,
135
(
1
), p.
011033
.
13.
Biela
,
C.
,
Brandstetter
,
C.
,
Schiffer
,
H.-P.
, and
Heinichen
,
F.
,
2013
, “
Unsteady Wall Pressure Measurement in a One-and-a-Half Stage Axial Transonic Compressor During Stall Inception
,”
Proc. Inst. Mech. Eng., Part A
,
227
(
6
), pp.
646
653
.
14.
Holzinger
,
F.
,
Wartzek
,
F.
,
Jüngst
,
M.
,
Schiffer
,
H.-P.
, and
Leichtfuß
,
S.
,
2016
, “
Self-Excited Blade Vibration Experimentally Investigated in Transonic Compressors: Rotating Instabilities and Flutter
,”
ASME J. Turbomach.
,
138
(
4
), p.
041006
.
15.
Möller
,
D.
,
Jüngst
,
M.
,
Holzinger
,
F.
,
Brandstetter
,
C.
,
Schiffer
,
H.-P.
, and
Leichtfuß
,
S.
,
2016
, “
Mechanism of Nonsynchronous Blade Vibration in a Transonic Compressor Rig
,”
ASME J. Turbomach.
,
139
(
1
), p.
011002
.
16.
Brandstetter
,
C.
,
Biela
,
C.
,
Kegalj
,
M.
, and
Schiffer
,
H.-P.
,
2011
, “PIV-Measurements in a Transonic Compressor Test Rig With Variable Inlet Guide Vanes,” 20th International Symposium on Air Breathing Engines (
ISABE
), Gothenburg, Sweden, Sept. 12–16, pp.
448
458
.
17.
Graftieaux
,
L.
,
Michard
,
M.
, and
Grosjean
,
N.
,
2001
, “
Combining PIV, Pod and Vortex Identification Algorithms for the Study of Unsteady Turbulent Swirling Flows
,”
Meas. Sci. Technol.
,
12
(
9
), p.
1422
.
18.
Jüngst
,
M.
,
Holzinger
,
F.
,
Leichtfuss
,
S.
, and
Schiffer
,
H.-P.
,
2015
, “
Analysing Non-Synchronous Blade Vibrations in a Transonic Compressor Rotor
,”
11th European Conference on Turbomachinery
(ETC), Madrid, Spain, Mar. 23–27, Paper No.
ETC2015-079
.
19.
Kameier
,
F.
, and
Neise
,
W.
,
1997
, “
Rotating Blade Flow Instability as a Source of Noise in Axial Turbomachines
,”
J. Sound Vib.
,
203
(
5
), pp.
833
853
.
You do not currently have access to this content.