During engine operation, fan casing abradable liners are worn by the blade tip, resulting in the formation of trenches. This paper describes the influence of these trenches on the fan blade tip aerodynamics. A detailed understanding of the fan tip flow features for cropped and trenched clearances is first developed. A parametric model is then used to model trenches in the casing above the blade tip and varying blade tip positions. It is shown that increasing clearance via a trench reduces performance by less than increasing clearance through cropping the blade tip. A response surface method is then used to generate a model that can predict fan efficiency for a given set of clearance and trench parameters. This model can be used to influence fan blade design and understand engine performance degradation in service. It is shown that an efficiency benefit can be achieved by increasing the amount of tip rubbing, leading to a greater portion of the tip clearance sat within the trench. It is shown that the efficiency sensitivity to clearance is biased toward the leading edge (LE) for cropped tips and the trailing edge (TE) for trenches.

References

References
1.
Denton
,
J. D.
,
1993
, “Loss Mechanisms in Turbomachines,”
ASME
Paper No. 93-GT-435.
2.
Storer
,
J.
, and
Cumpsty
,
N.
,
1994
, “
An Approximate Analysis and Prediction Method for Tip Clearance Loss in Axial Compressors
,”
ASME J. Turbomach.
,
116
(
4
), pp.
648
656
.
3.
Sieverding
,
C.
,
1985
,
Tip Clearance Effects in Axial Turbomachines: April 15-19, 1985
,
Von Karman Institute for Fluid Dynamics
, Sint-Genesius-Rode, Belgium.
4.
Kammer
,
A. S.
, and
Olgac
,
N.
,
2016
, “
Blade/Casing Rub Interaction in Turbomachinery: Structural Parameters Influence on Stability
,”
J. Propul. Power
,
32
(
4
), pp.
929
938
.
5.
Ma
,
H.
,
Yin
,
F.
,
Guo
,
Y.
,
Tai
,
X.
, and
Wen
,
B.
,
2016
, “
A Review on Dynamic Characteristics of Blade–Casing Rubbing
,”
Nonlinear Dyn.
,
84
(
2
), pp.
437
472
.
6.
Fois
,
N.
,
Watson
,
M.
, and
Marshall
,
M.
,
2016
, “
The Influence of Material Properties on the Wear of Abradable Materials
,”
Proc. Inst. Mech. Eng., Part J
,
231
(
2
), pp.
240
253
.
7.
Legrand
,
M.
,
Batailly
,
A.
, and
Pierre
,
C.
,
2011
, “
Numerical Investigation of Abradable Coating Removal in Aircraft Engines Through Plastic Constitutive Law
,”
ASME J. Comput. Nonlinear Dyn.
,
7
(
1
), p.
011010
.
8.
Adamczyk
,
J.
,
Celestina
,
M.
, and
Greitzer
,
E.
,
1991
, “The Role of Tip Clearance in High-Speed Fan Stall,”
ASME
Paper No. 91-GT-083.
9.
Sakulkaew
,
S.
,
Tan
,
C.
,
Donahoo
,
E.
,
Cornelius
,
C.
, and
Montgomery
,
M.
,
2013
, “
Compressor Efficiency Variation With Rotor Tip Gap From Vanishing to Large Clearance
,”
ASME J. Turbomach.
,
135
(
3
), p.
031030
.
10.
Seshadri
,
P.
,
Shahpar
,
S.
, and
Parks
,
G. T.
,
2014
, “Robust Compressor Blades for Desensitizing Operational Tip Clearance Variations,”
ASME
Paper No. GT2014-26624.
11.
Beheshti
,
B. H.
,
Teixeira
,
J. A.
,
Ivey
,
P. C.
,
Ghorbanian
,
K.
, and
Farhanieh
,
B.
,
2004
, “
Parametric Study of Tip Clearance—Casing Treatment on Performance and Stability of a Transonic Axial Compressor
,”
ASME J. Turbomach.
,
126
(
4
), pp.
527
535
.
12.
Shabbir
,
A.
, and
Adamczyk
,
J. J.
,
2005
, “
Flow Mechanism for Stall Margin Improvement Due to Circumferential Casing Grooves on Axial Compressors
,”
ASME J. Turbomach.
,
127
(
4
), pp.
708
717
.
13.
Houghton
,
T.
, and
Day
,
I.
,
2012
, “
Stability Enhancement by Casing Grooves: The Importance of Stall Inception Mechanism and Solidity
,”
ASME J. Turbomach.
,
134
(
2
), p.
021003
.
14.
Qin
,
N.
,
Carnie
,
G.
,
Wang
,
Y.
, and
Shahpar
,
S.
,
2014
, “
Design Optimization of Casing Grooves Using Zipper Layer Meshing
,”
ASME J. Turbomach.
,
136
(
3
), p.
031002
.
15.
Robideau
,
B. A.
, and
Niiler
,
J.
,
1980
, “Blade Tip Seal for an Axial Flow Rotary Machine,” United Technologies Corporation, Farmington, CT, U.S. Patent No.
4,238,170
.
16.
Korting
,
P.
, and
Beacher
,
B.
,
1989
, “
Improved Compressor Performance Using Recessed Clearance (Trenches)
,”
J. Propul. Power
,
5
(
4
), pp.
469
475
.
17.
Lapworth
,
L.
,
2004
, “
Hydra-CFD: A Framework for Collaborative CFD Development
,”
International Conference on Scientific and Engineering Computation
(
IC-SEC
), Singapore, July 5–8, pp. 1–6.
18.
Spalart
,
P. R.
, and
Allmaras
,
S. R.
,
1992
, “
A One Equation Turbulence Model for Aerodynamic Flows
,”
AIAA
Paper No. 1992-439.
19.
Shahpar
,
S.
, and
Lapworth
,
L.
,
2003
, “Padram: Parametric Design and Rapid Meshing System for Turbomachinery Optimisation,”
ASME
Paper No. GT2003-38698.
20.
Shahpar
,
S.
,
2001
, “
Soft: A New Design and Optimisation Tool for Turbomachinery
,”
Evolutionary Methods for Design Optimisation And Control
, Barcelona, Spain.
21.
McKay
,
M. D.
,
Beckman
,
R. J.
, and
Conover
,
W. J.
,
2000
, “
A Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output From a Computer Code
,”
Technometrics
,
42
(
1
), pp.
55
61
.
22.
Box
,
G. E.
, and
Wilson
,
K.
,
1992
, “
On the Experimental Attainment of Optimum Conditions
,”
In Breakthroughs in Statistics
,
Springer
, New York, pp.
270
310
.
You do not currently have access to this content.