Fouling and erosion are two pressing problems that severely affect gas turbine performance and life. When aircraft fly through a volcanic ash cloud, the two phenomena occur simultaneously in the cold as well as in the hot section of the engine. In the high-pressure turbine (HPT), in particular, particles soften or melt due to the high gas temperatures and stick to the wet surfaces. The throat area, and hence the capacity, of the HPT is modified by these phenomena, affecting the engine stability and possibly forcing engine shutdown. This work presents a model for deposition and erosion in gas turbines and its implementation in a three-dimensional Navier–Stokes solver. Both deposition and erosion are taken into account, together with deposit detachment due to changed flow conditions. The model is based on a statistical description of the behavior of softened particles. The particles can stick to the surface or can bounce away, eroding the material. The sticking prediction relies on the authors' Energy Based FOulinG (EBFOG) model. The impinging particles which do not stick to the surface are responsible for the removal of material. The model is demonstrated on a HPT vane. The airfoil shape evolution over the exposure time as a consequence of the impinging particles has been carefully monitored. The variation of the flow field as a consequence of the geometrical changes is reported as an important piece of on-board information for the flight crew.

References

References
1.
Clarkson
,
R. J.
,
Majewicz
,
E. J.
, and
Mack
,
P.
,
2016
, “
A Re-Evaluation of the 2010 Quantitative Understanding of the Effects Volcanic Ash Has on Gas Turbine Engines
,”
Proc. Inst. Mech. Eng., Part G
,
230
(
12
), pp.
2274
2291
.
2.
Dunn
,
M. G.
,
2012
, “
Operation of Gas Turbine Engines in an Environment Contaminated With Volcanic Ash
,”
ASME J. Turbomach.
,
134
(
5
), p.
051001
.
3.
Elghobashi
,
S.
,
1994
, “
On Predicting Particle-Laden Turbulent Flows
,”
Appl. Sci. Res.
,
52
(
4
), pp.
309
329
.
4.
Ogiriki
,
E. A.
,
Li
,
Y. G.
,
Nikolaidis
,
T.
,
Isaiah
,
T. E.
, and
Sule
,
G.
,
2015
, “
Effect of Fouling, Thermal Barrier Coating Degradation and Film Cooling Holes Blockage on Gas Turbine Engine Creep Life
,”
Procedia CIRP
,
38
, pp.
228
233
.
5.
Hamed
,
A.
, and
Kuhn
,
T. P.
,
1995
, “
Effects of Variational Particle Restitution Characteristics on Turbomachinery Erosion
,”
ASME J. Eng. Gas Turbines Power
,
117
(
3
), pp.
432
440
.
6.
Casari
,
N.
,
Pinelli
,
M.
,
Suman
,
A.
,
Di Mare
,
L.
, and
Montomoli
,
F.
,
2017
, “
Gas Turbine Blade Geometry Variation Due to Fouling
,” 12th European Conference on Turbomachinery Fluid Dynamics and Thermodynamics (ETC 2017), Stockholm, Sweden, Apr. 3--7, Paper No.
ETC2017-353
.
7.
Walsh
,
P.
,
Sayre
,
A.
,
Loehden
,
D.
,
Monroe
,
L.
,
Beér
,
J.
, and
Sarofim
,
A.
,
1990
, “
Deposition of Bituminous Coal Ash on an Isolated Heat Exchanger Tube: Effects of Coal Properties on Deposit Growth
,”
Prog. Energy Combust. Sci.
,
16
(
4
), pp.
327
345
.
8.
Brach
,
R. M.
, and
Dunn
,
P. F.
,
1992
, “
A Mathematical Model of the Impact and Adhesion of Microspheres
,”
Aerosol Sci. Technol.
,
16
(
1
), pp.
51
64
.
9.
Kleinhans
,
U.
,
Wieland
,
C.
,
Babat
,
S.
,
Scheffknecht
,
G.
, and
Spliethoff
,
H.
,
2016
, “
Ash Particle Sticking and Rebound Behavior: A Mechanistic Explanation and Modeling Approach
,”
Proc. Combust. Inst.
,
36
(
2
), pp.
2341
2350
.
10.
Song
,
W.
,
Lavallée
,
Y.
,
Hess
,
K.-U.
,
Kueppers
,
U.
,
Cimarelli
,
C.
, and
Dingwell
,
D. B.
,
2016
, “
Volcanic Ash Melting Under Conditions Relevant to Ash Turbine Interactions
,”
Nat. Commun.
,
7
, p.
10795
.
11.
Singh
,
S.
, and
Tafti
,
D.
,
2015
, “
Particle Deposition Model for Particulate Flows at High Temperatures in Gas Turbine Components
,”
Int. J. Heat Fluid Flow
,
52
, pp.
72
83
.
12.
Cosher
,
C. R.
, and
Dunn
,
M. G.
,
2016
, “
Comparison of the Sensitivity to Foreign Particle Ingestion of the Ge-F101 and P/W-F100 Engines to Modern Aircraft Engines
,”
ASME J. Eng. Gas Turbines Power
,
138
(
12
), p.
121201
.
13.
Taylor
,
H.
, and
Lichte
,
F.
,
1980
, “
Chemical Composition of Mount St. Helens Volcanic Ash
,”
Geophys. Res. Lett.
,
7
(
11
), pp.
949
952
.
14.
Casari
,
N.
,
Pinelli
,
M.
,
Suman
,
A.
,
di Mare
,
L.
, and
Montomoli
,
F.
,
2017
, “
An Energy-Based Fouling Model for Gas Turbines: EBFOG
,”
ASME J. Turbomach.
,
139
(
2
), p.
021002
.
15.
Hamed
,
A.
,
Tabakoff
,
W.
,
Rivir
,
R.
,
Das
,
K.
, and
Arora
,
P.
,
2005
, “
Turbine Blade Surface Deterioration by Erosion
,”
ASME J. Turbomach.
,
127
(
3
), pp.
445
452
.
16.
Bons
,
J.
,
Taylor
,
R.
,
McClain
,
S.
, and
Rivir
,
R.
,
2001
, “
The Many Faces of Turbine Surface Roughness
,”
ASME J. Turbomach.
,
123
(
4
), pp.
739
748
.
17.
Taylor
,
R.
,
1990
, “
Surface Roughness Measurements on Gas Turbine Blades
,”
ASME J. Turbomach.
,
112
(
2
), pp.
175
180
.
18.
Tarada
,
F.
, and
Suzuki
,
M.
,
1993
, “External Heat Transfer Enhancement to Turbine Blading Due to Surface Roughness,”
ASME
Paper No. 93-GT-074.
19.
Tabakoff
,
W.
,
Hamed
,
A.
, and
Metwally
,
M.
,
1990
, “Effect of Particle Size Distribution on Particle Dynamics and Blade Erosion in Axial Flow Turbines,”
ASME J. Eng. Gas Turbines Power
,
113
(
4
), pp.
607
615
.
20.
Das
,
S. K.
,
Sharma
,
M. M.
, and
Schechter
,
R. S.
,
1995
, “
Adhesion and Hydrodynamic Removal of Colloidal Particles From Surfaces
,”
Part. Sci. Technol.
,
13
(
3–4
), pp.
227
247
.
21.
Reeks
,
M.
,
Reed
,
J.
, and
Hall
,
D.
,
1988
, “
On the Resuspension of Small Particles by a Turbulent Flow
,”
J. Phys. D: Appl. Phys.
,
21
(
4
), p.
574
.
22.
Soltani
,
M.
, and
Ahmadi
,
G.
,
1994
, “
On Particle Adhesion and Removal Mechanisms in Turbulent Flows
,”
J. Adhes. Sci. Technol.
,
8
(
7
), pp.
763
785
.
23.
Arts
,
T.
,
Lambertderouvroit
,
M.
, and
Rutherford
,
A.
,
1990
, “Aero-Thermal Investigation of a Highly Loaded Transonic Linear Turbine Guide Vane Cascade: A Test Case for Inviscid and Viscous Flow Computations,” von Karman Institute for Fluid Dynamics, Sint-Genesius-Rode, Belgium, Technical Report No.
91
.
24.
Taltavull
,
C.
,
Dean
,
J.
, and
Clyne
,
T. W.
,
2016
, “
Adhesion of Volcanic Ash Particles Under Controlled Conditions and Implications for Their Deposition in Gas Turbines
,”
Adv. Eng. Mater.
,
18
(
5
), pp.
803
813
.
25.
Macpherson
,
G. B.
,
Nordin
,
N.
, and
Weller
,
H. G.
,
2009
, “
Particle Tracking in Unstructured, Arbitrary Polyhedral Meshes for Use in CFD and Molecular Dynamics
,”
Commun. Numer. Methods Eng.
,
25
(
3
), pp.
263
273
.
26.
Rispoli
,
F.
,
Delibra
,
G.
,
Venturini
,
P.
,
Corsini
,
A.
,
Saavedra
,
R.
, and
Tezduyar
,
T. E.
,
2015
, “
Particle Tracking and Particle–Shock Interaction in Compressible-Flow Computations With the V-SGS Stabilization and Y Zβ Shock-Capturing
,”
Comput. Mech.
,
55
(
6
), pp.
1201
1209
.
27.
Wenglarz
,
R. A.
, and
Cohn
,
A.
,
1983
, “Turbine Deposition Evaluations Using Simplified Tests,”
ASME
Paper No. 83-GT-115.
28.
Lau
,
H.
, and
Windand
,
M.
,
2014
, “Thermal Protection Layer Destroyed, Sensors Blocked,” German Aerospace Center, Cologne, Germany, accessed Feb. 9, 2018, http://www.dlr.de/dlr/en/desktopdefault.aspx/tabid-10080/150_read-11746/year-2014/150_page-3/#/gallery/16677.
29.
López
,
A.
,
Nicholls
,
W.
,
Stickland
,
M. T.
, and
Dempster
,
W. M.
,
2015
, “
CFD Study of Jet Impingement Test Erosion Using Ansys Fluent® and OpenFoam®
,”
Comput. Phys. Commun.
,
197
, pp.
88
95
.
30.
Grant
,
G.
, and
Tabakoff
,
W.
,
1975
, “
Erosion Prediction in Turbomachinery Resulting From Environmental Solid Particles
,”
J. Aircr.
,
12
(
5
), pp.
471
478
.
31.
Tabakoff
,
W.
, and
Malak
,
M. F.
,
1985
, “Laser Measurements of Fly Ash Rebound Parameters for Use in Trajectory Calculations,”
ASME
Paper No. 85-GT-161.
32.
Tippayawong
,
N.
, and
Preechawuttipong
,
I.
,
2011
, “
Analytical Prediction of Particle Detachment From a Flat Surface by Turbulent Air Flows
,”
Chiang Mai J. Sci.
,
38
(
3
), pp.
503
507
.
33.
El-Batsh
,
M. H.
,
2001
, “Modeling Particle Deposition on Compressor and Turbine Blade Surfaces,”
Ph.D. thesis
, Vienna University of Technology, Vienna, Austria.
34.
Webb
,
J.
,
Casaday
,
B.
,
Barker
,
B.
,
Bons
,
J.
,
Gledhill
,
A. D.
, and
Padture
,
N.
,
2012
, “
Coal Ash Deposition on Nozzle Guide Vanes—Part I: Experimental Characteristics of Four Coal Ash Types
,”
ASME J. Turbomach.
,
135
(
2
), p.
021033
.
35.
Prenter
,
R.
,
Ameri
,
A.
, and
Bons
,
J. P.
,
2016
, “
Deposition on a Cooled Nozzle Guide Vane With Nonuniform Inlet Temperatures
,”
ASME J. Turbomach.
,
138
(
10
), p.
101005
.
36.
Borello
,
D.
,
D'Angeli
,
L.
,
Salvagni
,
A.
,
Venturini
,
P.
, and
Rispoli
,
F.
,
2014
, “Study of Particles Deposition in Gas Turbine Blades in Presence of Film Cooling,”
ASME
Paper No. GT2014-26250.
37.
Casaday
,
B.
,
Prenter
,
R.
,
Bonilla
,
C.
,
Lawrence
,
M.
,
Clum
,
C.
,
Ameri
,
A. A.
, and
Bons
,
J. P.
,
2014
, “
Deposition With Hot Streaks in an Uncooled Turbine Vane Passage
,”
ASME J. Turbomach.
,
136
(
4
), p.
041017
.
38.
Parker
,
G.
, and
Lee
,
P.
,
1972
, “
Studies of the Deposition of Sub-Micron Particles on Turbine Blades
,”
Proc. Inst. Mech. Eng.
,
186
(
1
), pp.
519
526
.
39.
Bölcs
,
A.
, and
Sari
,
O.
,
1988
, “
Influence of Deposit on the Flow in a Turbine Cascade
,”
ASME J. Turbomach.
,
110
(
4
), pp.
512
519
.
40.
Gbadebo
,
S. A.
,
Hynes
,
T. P.
, and
Cumpsty
,
N. A.
,
2004
, “Influence of Surface Roughness on Three-Dimensional Separation in Axial Compressors,”
ASME
Paper No. GT2004-53619.
41.
Casari
,
N.
,
Pinelli
,
M.
,
Suman
,
A.
,
Di Mare
,
L.
, and
Montomoli
,
F.
,
2017
, “UQ Lab - EBFOG Deposition Data,” Imperial College London, London, accessed Feb. 6, 2018, http://wwwf.imperial.ac.uk/aeronautics/research/montomolilab/nicola.html
You do not currently have access to this content.