A transonic centrifugal compressor was aerodynamically optimized by means of a numerical optimization process. The objectives were to increase the isentropic efficiency and to reduce the acoustic signature by decreasing the amplitude of pre-shock pressure waves at the inlet of the compressor. The optimization was performed at three operating points on the 100% speed line in order to maintain choke mass flow and surge margin. At the design point, the specific work input was kept equal. The baseline impeller was designed by using ruled surfaces due to requirements for flank milling. To investigate the benefits of arbitrary blade surfaces, the restrictions of ruled surfaces were abolished and fully three-dimensional (3D) blade profiles allowed. In total, therefore, 45 parameters were varied during the optimization. The combined geometric and aerodynamic analysis reveals that a forward swept leading edge (LE) and a concave suction side at the tip of the LE are effective design features for reducing the shock strength. Beyond that, the blade shape of the optimized compressor creates a favorable impeller outlet flow, which is the main reason why the performance of the vaneless diffuser improves. In total, a gain of 1.4% points in isentropic total-to-static efficiency, evaluated by computational fluid dynamics (CFD) at the exit plane of the vaneless diffuser, is achieved.

References

References
1.
Pierret
,
S.
, and
Van den Braembussche
,
R. A.
,
1999
, “
Turbomachinery Blade Design Using a Navier-Stokes Solver and Artificial Neural Network
,”
ASME J. Turbomach.
,
121
(
2
), pp.
326
332
.
2.
Pierret
,
S.
,
Demeulenaere
,
A.
,
Gouverneur
,
B.
,
Hirsch
,
C.
, and
Van den Braembussche
,
R.
,
2000
, “
Designing Turbomachinery Blades With the Function Approximation Concept and the Navier-Stokes Equations
,”
AIAA
Paper No. 2000-4879.
3.
Van den Braembussche
,
R. A.
,
Işlek
,
A. A.
, and
Alsalihi
,
Z.
,
2003
, “
Aerothermal Optimization of Micro-Gasturbine Compressor Including Heat Transfer
,” International Gas Turbine Congress (IGTC), Tokyo, Japan, Paper No.
IGTC2003Tokyo OS-101
.
4.
Van den Braembussche
,
R. A.
,
2006
, “
Optimization of Radial Impeller Geometry
,” NATO Research and Technology Organisation, Neuilly sur Seine, France, Editorial Notes No. RTO-EN-AVT-143.
5.
Van den Braembussche
,
R. A.
,
Alsalihi, Z.
,
Verstraete, T.
,
Matsuo, A.
,
Ibaraki, S.
,
Sugimoto, K.
, and
Tomita, I.
,
2012
, “
Multidisciplinary Multipoint Optimization of a Transonic Turbocharger Compressor
,”
ASME
Paper No. GT2012-69645.
6.
Verstraete
,
T.
,
Alsalihi
,
Z.
, and
Van den Braembussche
,
R. A.
,
2007
, “
Multidisciplinary Optimization of a Radial Compressor for Micro Gas Turbine Applications
,”
ASME
Paper No. GT2007-27484.
7.
Verstraete
,
T.
,
Hildebrandt
,
A.
, and
Van den Braembussche
,
R.
,
2011
, “
Multidisciplinary Design and Off-Design Optimization of a Radial Compressor for Industrial Applications
,” Tenth International Symposium on Experimental Computational Aerothermodynamics of Internal Flows, Brussels, Belgium, July 4–7, Paper No.
ISAIF10-153
.
8.
Starke
,
A.
,
Bamba
,
T.
,
Filsinger
,
D.
, and
Harley
,
P.
,
2015
, “
An Automatic Optimisation of a Centrifugal Compressor for Improved Performance at Near Surge Operation
,” International Gas Turbine Congress (
IGTC
), Tokyo, Japan, Oct. 10–11, pp.
495
501
.
9.
Barsi
,
D.
,
Costa
,
C.
,
Cravero
,
C.
, and
Ricci
,
G.
,
2014
, “
Aerodynamic Design of a Centrifugal Compressor Stage Using an Automatic Optimization Strategy
,”
ASME
Paper No. GT2014-26465.
10.
Demeulenaere
,
A.
,
Bonaccorsi
,
J.-C.
,
Gutzwiller
,
D.
,
Hu
,
L.
, and
Sun
,
H.
,
2015
, “
Multi-Disciplinary Multi-Point Optimization of a Turbocharger Compressor Wheel
,”
ASME
Paper No. GT2015-43631.
11.
Perrone
,
A.
,
Satta
,
F.
,
Ricci
,
G.
,
Ratto
,
L.
, and
Zunino
,
P.
,
2016
, “
Multi-Disciplinary Optimization of a Centrifugal Compressor for Micro-Turbine Applications
,”
ASME
Paper No. GT2016-57278.
12.
Diener
,
O. H. F.
,
van der Spuy
,
S. J.
,
Backström
,
T. W V.
, and
Hildebrandt
,
T.
,
2016
, “
Multi-Disciplinary Optimization of a Mixed-Flow Compressor Impeller
,”
ASME
Paper No. GT2016-57008.
13.
Raitor
,
T.
,
Reutter
,
O.
,
Aulich
,
M.
, and
Nicke
,
E.
,
2013
, “
Aerodynamic Design Studies of a Transonic Centrifugal Compressor Impeller Based on Automatic 3D-CFD Optimization
,”
Tenth European Turbomachinery Conference
, Lappeenranta, Finnland, Apr. 15–19.
14.
Voß
,
C.
,
Aulich
,
M.
, and
Raitor
,
T.
,
2014
, “
Metamodel Assisted Aeromechanical Optimization of a Transonic Centrifugal Compressor
,” 15th International Symposium on Transport Phenomena and Dynamics of Rotating Machinery, (
ISROMAC
), Cologne, Germany, Mar. 24–27.
15.
Elfert
,
M.
,
Weber
,
A.
,
Wittrock
,
D.
,
Peters
,
A.
,
Voß
,
C.
, and
Nicke
,
E.
,
2016
, “
Experimental and Numerical Verification of an Optimization of a Fast Rotating High Performance Radial Compressor Impeller
,”
ASME
Paper No. GT2016-56546.
16.
Krain
,
H.
, and
Hoffmann
,
B.
,
2005
, “
Homogene Lauf-/Leitradströmung im Radialverdichter—Abschlussbericht über das Vorhaben Nr. 798
,” DLR-Institut für Antriebstechnik/FVV, Cologne, Germany, Technical Report No. Heft 810.
17.
Krain
,
H.
,
Hoffmann
,
B.
,
Rhone
,
K.-H.
,
Eisenlohr
,
G.
, and
Richter
,
F.-A.
,
2007
, “
Improved High Pressure Ratio Centrifugal Compressor
,”
ASME
Paper No. GT2007-27100.
18.
Hayden
,
R. E.
,
Bliss
,
D. B.
,
Murray
,
B. S.
,
Chandiramani
,
K. L.
,
Smullin
,
J. I.
, and
Schwaar
,
P. G.
,
1977
, “
Analysis and Design of a High Tip Speed, Low Noise Aircraft Fan Incorporating Swept Leading Edge Rotor and Stator Blades
,” NASA Lewis Research Center, Cleveland, OH, Technical Report No.
NASA-CR-135092
.
19.
Hah
,
C.
,
Puterbaugh
,
S.
, and
Wadia
,
A.
,
1998
, “
Control of Shock Structure and Secondary-Flow Field Inside Transonic Compressor Rotors Through Aerodynamic Sweep
,”
ASME
Paper No. 98-GT-561.
20.
Denton
,
J. D.
, and
Xu
,
L.
,
1999
, “
The Exploitation of 3D Flow in Turbomachinery Design
,”
Turbomachinery Blade Design Systems
(Lecture Series),
von Karman Institute for Fluid Dynamics
, Sint-Genesius-Rode, Belgium.
21.
Runstadler
,
P. W.
, and
Dolan
,
F. X.
,
1975
,
Diffuser Data Book
,
1st ed.
,
Creare Technical Information Service
,
Hanover
, NH.
22.
Van den Braembussche
,
R. A.
,
2015
,
Centrifugal Compressors Analysis and Design
,
von Karman Institute for Fluid Dynamics
, Sint-Genesius-Rode, Belgium.
23.
Senoo
,
Y.
, and
Kyushu
,
U.
,
1984
, “
Vaneless Diffusers
,”
Flow in Centrifugal Compressors
(Lecture Series),
von Karman Institute for Fluid Dynamics
, Sint-Genesius-Rode, Belgium.
You do not currently have access to this content.