In gas turbines with can combustors, the trailing edge (TE) of the combustor transition duct wall is found upstream of every second vane. This paper presents an experimental and numerical investigation of the effect of the combustor wall TE on the aerothermal performance of the nozzle guide vane. In the measurements carried out in a high-speed experimental facility, the wake of this wall is shown to increase the aerodynamic loss of the vane. On the other hand, the wall alters secondary flow structures and has a protective effect on the heat transfer in the leading edge-endwall junction, a critical region for component life. The different clocking positions of the vane relative to the combustor wall are tested experimentally and are shown to alter the aerothermal field. The experimental methods and processing techniques adopted in this work are used to highlight the differences between the different cases studied.

References

References
1.
Goldstein
,
R. J.
, and
Cho
,
H. H.
,
1995
, “
A Review of Mass Transfer Measurements Using Naphthalene Sublimation
,”
Exp. Therm. Fluid Sci.
,
10
(
4
), pp.
416
434
.
2.
Denton
,
J. D.
, and
Pullan
,
G.
,
2012
, “A Numerical Investigation Into the Sources of Endwall Loss in Axial Flow Turbines,”
ASME
Paper No. GT2012-69173.
3.
Perdichizzi
,
A.
,
1990
, “
Mach Number Effects on Secondary Flow Development Downstream of a Turbine Cascade
,”
ASME J. Turbomach.
,
112
(
4
), pp.
643
651
.
4.
Kang
,
M. B.
,
Kohli
,
A.
, and
Thole
,
K. A.
,
1999
, “
Heat Transfer and Flowfield Measurements in the Leading Edge Region of a Stator Vane Endwall
,”
ASME J. Turbomach.
,
121
(
3
), pp.
558
568
.
5.
Nealy
,
D. A.
,
Mihelc
,
M. S.
,
Hylton
,
L. D.
, and
Gladden
,
H. J.
,
1984
, “
Measurements of Heat Transfer Distribution Over the Surfaces of Highly Loaded Turbine Nozzle Guide Vanes
,”
ASME J. Eng. Gas Turbines Power
,
106
(
1
), pp.
149
158
.
6.
Nasir
,
S.
,
Carullo
,
J. S.
,
Ng
,
W.
,
Thole
,
K. A.
,
Wu
,
H.
,
Zhang
,
L. J.
, and
Moon
,
H. K.
,
2009
, “
Effects of Large Scale High Freestream Turbulence and Exit Reynolds Number on Turbine Vane Heat Transfer in a Transonic Cascade
,”
ASME J. Turbomach.
,
131
(
2
), p.
021021
.
7.
Wheeler
,
A. P. S.
,
Atkins
,
N. R.
, and
He
,
L.
,
2011
, “
Turbine Blade Tip Heat Transfer in Low Speed and High Speed Flows
,”
ASME J. Turbomach.
,
133
(4), p.
041025
.
8.
Bogard
,
D. G.
, and
Thole
,
K. A.
,
2006
, “
Gas Turbine Film Cooling
,”
J. Propul. Power
,
22
(
2
), pp.
249
270
.
9.
Luque
,
S.
,
Kanjirakkad
,
V.
,
Aslanidou
,
I.
,
Lubbock
,
R.
,
Rosic
,
B.
, and
Uchida
,
S.
,
2015
, “
A New Experimental Facility to Investigate Combustor-Turbine Interactions in Gas Turbines With Multiple Can Combustors
,”
ASME J. Eng. Gas Turbines Power
,
137
(
5
), p.
051503
.
10.
Gillespie
,
D. R. H.
,
1996
, “Intricate Internal Cooling Systems for Gas Turbine Blading,”
Ph.D. thesis
, University of Oxford, Oxford, UK.
11.
Oldfield
,
M. L. G.
,
2008
, “
Impulse Response Processing of Transient Heat Transfer Gauge Signals
,”
ASME J. Turbomach.
,
130
(2), p.
021023
.
12.
O'Dowd
,
D. O.
,
2010
, “Aero-Thermal Performance of Transonic High-Pressure Turbine Blade Tips,”
Ph.D. thesis
, University of Oxford, Oxford, UK.
13.
Lynch
,
S. P.
, and
Thole
,
K. A.
,
2011
, “
The Effect of the Combustor-Turbine Slot and Midpassage Gap on Vane Endwall Heat Transfer
,”
ASME J. Turbomach.
,
133
(
4
), p.
041002
.
14.
Schultz
,
D. L.
, and
Jones
,
T. V.
,
1973
, “
Heat-Transfer Measurements in Short-Duration Hypersonic Facilities
,”
AGARDograph 165, Advisory Group for Aerospace Research and Development, Neuilly-Sur-Seine, France
, Report No.
165
.
15.
Kline
,
S. J.
, and
McClintock
,
F. A.
,
1953
, “
Describing Uncertainties in Single-Sample Experiments
,”
J. Mech. Eng.
,
75
, pp.
3
8
.
16.
Moffat
,
R. J.
,
1988
, “
Describing the Uncertainties in Experimental Results
,”
Exp. Therm. Fluid Sci.
,
1
(
1
), pp.
3
17
.
17.
Coleman
,
H. W.
, and
Steele
,
W.
,
2009
,
Experimentation, Validation, and Uncertainty Analysis for Engineers
,
3rd ed.
,
Wiley
, Hoboken, NJ.
18.
Goldstein
,
R.
,
Wang
,
H.
, and
Jabbari
,
M.
,
1995
, “
The Influence of Secondary Flows Near the Endwall and Boundary Layer Disturbance on Convective Transport From a Turbine Blade
,”
ASME J. Turbomach.
,
117
(
4
), pp.
657
665
.
19.
Wang
,
H. P.
,
Olson
,
S. J.
,
Goldstein
,
R. J.
, and
Eckert
,
E. R. G.
,
1997
, “
Flow Visualization in a Linear Turbine Cascade of High Performance Turbine Blades
,”
ASME J. Turbomach.
,
119
(
1
), pp.
1
8
.
20.
Graziani
,
R. A.
,
Blair
,
M. F.
,
Taylor
,
J. R.
, and
Mayle
,
R. E.
,
1980
, “
Experimental Study of Endwall and Airfoil Surface Heat Transfer in a Large Scale Turbine Blade Cascade
,”
ASME J. Eng. Gas Turbines Power
,
102
(
2
), pp.
257
267
.
21.
Thole
,
K. A.
,
2006
, “
Airfoil Endwall Heat Transfer
,”
The Gas Turbine Handbook
,
National Energy Technology Laboratory, U.S. Department of Energy
, Pittsburgh, PA, pp.
353
362
.
You do not currently have access to this content.