The original Spalart–Allmaras (SA) model is known to predict premature stall when applied to fan or compressor, which is in line with the observation of other researchers who use the SA model. Therefore, to improve the prediction of the stall boundary, the original SA model was modified by scaling the source term based on the local pressure gradient and the velocity helicity of the flow. Furthermore, a generalized wall function valid for nonzero wall pressure gradient was implemented to improve the accuracy of boundary conditions at the solid wall. This work aims to produce a turbulence model which can be used to model flows near the stall boundary for the transonic fan rotors on relatively coarse grids of around 600k points per passage. Initially, two fan rotors with different design and operating speeds were used to optimize the new parameters in the modified turbulence model. The optimization was based on improving the correlation between measured and numerical radial profiles of the pressure ratio. Thereafter, steady computations were performed for two other fans (by using the same parameters), and the predictions were compared with the experimental data for all the four fan rotors. Numerical results showed a significant improvement over those obtained with the original SA model, when compared against the measured data. Finally, for completeness, it was decided to test the performance of the modified model by comparing the result with measured data for a simple canonical case.

References

References
1.
Spalart
,
P. R.
, and
Allmaras
,
S. R.
,
1992
, “A One-Equation Turbulence Model for Aerodynamic Flows,”
AIAA
Paper No. 92-0439.
2.
Dodds
,
J.
, and
Vahdati
,
M.
,
2015
, “
Rotating Stall Observations in a High Speed Compressor—Part II: Numerical Study
,”
ASME J. Turbomach.
,
137
(
5
), p.
051003
.
3.
Choi
,
M.
,
Vahdati
,
M.
, and
Imregun
,
M.
,
2011
, “
Effects of Fan Speed on Rotating Stall Inception and Recovery
,”
ASME J. Turbomach.
,
133
(
4
), p.
041013
.
4.
Choi
,
M.
,
Smith
,
N. H.
, and
Vahdati
,
M.
,
2013
, “
Validation of Numerical Simulation for Rotating Stall in a Transonic Fan
,”
ASME J. Turbomach.
,
135
(
2
), p.
021004
.
5.
Liu
,
Y.
,
Lu
,
L.
,
Fang
,
L.
, and
Gao
,
F.
,
2011
, “
Modification of Spalart–Allmaras Model With Consideration of Turbulence Energy Backscatter Using Velocity Helicity
,”
Phys. Lett.
,
375
(
24
), pp.
2377
2381
.
6.
Li
,
M.
,
Lipeng
,
L.
,
Jian
,
F.
, and
Qiuhui
,
W.
,
2014
, “
A Study on Turbulence Transportation and Modification of Spalart–Allmaras Model for Shock-Wave/Turbulent Boundary Layer Interaction Flow
,”
Chin. J. Aeronaut.
,
27
(
2
), pp.
200
209
.
7.
Oriji
,
U. R.
, and
Tucker
,
P. G.
,
2014
, “
Modular Turbulence Modeling Applied to an Engine Intake
,”
ASME J. Turbomach.
,
136
(
5
), p.
051004
.
8.
Shih
,
T.-H.
,
Povinelli
,
L. A.
,
Liu
,
N.-S.
,
Potapczuk
,
M. G.
, and
Lumley
,
J.
,
1999
, “A Generalized Wall Function,” National Aeronautics and Space Administration, Washington, DC, Technical Report No.
NASA/TM-1999-209398
.
9.
Rumsey
,
C.
, 2018, “Turbulence Modeling Resource,” NASA Langley Research Center, Hampton, VA, accessed Jan. 29, 2018, http://turbmodels.larc.nasa.gov
10.
Eisfeld
,
B.
,
Rumsey
,
C.
, and
Togiti
,
V.
,
2016
, “
Verification and Validation of a Second-Moment-Closure Model
,”
AIAA J.
,
54
(
9
), pp.
1524
1540
.
11.
Sayma
,
A. I.
,
Vahdati
,
M.
,
Sbardella
,
L.
, and
Imregun
,
M.
,
2000
, “
Modeling of Three-Dimensional Viscous Compressible Turbomachinery Flows Using Unstructured Hybrid Grids
,”
AIAA J.
,
38
(
6
), pp.
945
954
.
12.
Vahdati
,
M.
,
Sayma
,
A.
,
Freeman
,
C.
, and
Imregun
,
M.
,
2005
, “
On the Use of Atmospheric Boundary Conditions for Axial-Flow Compressor Stall Simulations
,”
ASME J. Turbomach.
,
127
(
2
), pp.
349
351
.
13.
Lee
,
K.-B.
,
Wilson
,
M.
, and
Vahdati
,
M.
,
2016
, “Numerical Study on Aeroelastic Instability for a Low Speed Fan,”
ASME
Paper No. GT2016-56462.
14.
Vahdati
,
M.
, and
Cumpsty
,
N.
,
2015
, “
Aeroelastic Instability in Transonic Fans
,”
ASME J. Eng. Gas Turbines Power
,
138
(
2
), p.
022604
.
15.
Strazisar
,
A. J.
,
Wood
,
J. R.
,
Hathaway
,
M. D.
, and
Suder
,
K. L.
,
1989
, “Laser Anemometer Measurements in a Transonic Axial-Flow Fan Rotor,” National Aeronautics and Space Administration, Washington, DC, Technical Paper No.
2879
.
16.
Millikan
,
C. B.
,
1938
, “
A Critical Discussion of Turbulent Flows in Channels and Circular Tubes
,”
Fifth International Congress on Applied Mechanics
, Cambridge, MA, Sept. 12–26, pp.
386
392
.
17.
Tennekes
,
H.
, and
Lumley
,
J. L.
,
1972
,
A First Course in Turbulence
,
MIT Press
, Cambridge, MA.
18.
Ma¨rz
,
J.
,
Hah
,
C.
, and
Neise
,
W.
,
2002
, “
An Experimental and Numerical Investigation Into the Mechanisms of Rotating Instability
,”
ASME J. Turbomach.
,
124
(
3
), pp.
367
374
.
19.
Young
,
A.
,
Day
,
I.
, and
Pullan
,
G.
,
2013
, “
Stall Warning by Blade Pressure Signature Analysis
,”
ASME J. Turbomach.
,
135
(
1
), p.
011033
.
20.
Pardowitz
,
B.
,
Tapken
,
U.
,
Sorge
,
R.
,
Thamsen
,
P. U.
, and
Enghardt
,
L.
,
2014
, “
Rotating Instability in an Annular Cascade: Detailed Analysis of the Instationary Flow Phenomena
,”
ASME J. Turbomach.
,
136
(
6
), p.
061017
.
21.
Mailach
,
R.
,
Lehmann
,
I.
, and
Vogeler
,
K.
,
2001
, “
Rotating Instabilities in an Axial Compressor Originating From the Fluctuating Blade Tip Vortex
,”
ASME J. Turbomach.
,
123
(
3
), pp.
453
460
.
22.
Lapworth
,
B. L.
,
2004
, “
HYDRA-CFD: A Framework for Collaborative CFD Development
,”
International Conference on Scientific and Engineering Computation
(
IC-SEC
), Singapore, July 5–8, pp. 1–6.
You do not currently have access to this content.