The estimation of boundary layer losses requires the accurate specification of the freestream velocity, which is not straightforward in centrifugal compressor blade passages. This challenge stems from the jet-wake flow structure, where the freestream velocity between the blades cannot be clearly specified. In addition, the relative velocity decreases due to adverse pressure gradient. Therefore, the common assumption of a single freestream velocity over the blade surface might not be valid in centrifugal compressors. Generally in turbomachinery, the losses in the blade cascade boundary layers are estimated, e.g., with different loss coefficients, but they often rely on the assumption of a uniform flow field between the blades. To give guidelines for the estimation of the mentioned losses in highly distorted centrifugal compressor flow fields, this paper discusses the difficulties in the calculation of the boundary layer thickness in the compressor blade passages, compares different freestream velocity definitions, and demonstrates their effect on estimated boundary layer losses. Additionally, a hybrid method is proposed to overcome the challenges of defining a boundary layer in centrifugal compressors.

References

References
1.
Boyce
,
M. P.
,
1993
, “
Principles of Operation and Performance Estimation of Centrifugal Compressors
,”
Twenty-Second Turbomachinery Symposium
, Dallas, TX, Sept. 14–16, pp.
161
178
.
2.
Mateescu
,
D.
, and
Abdo
,
M.
,
2010
, “
Analysis of Flows Past Airfoils at Very Low Reynolds Numbers
,”
Proc. Inst. Mech. Eng. Part G: J. Aerosp. Eng.
,
224
(
7
), pp.
757
775
.
3.
Tiainen
,
J.
,
Jaatinen-Värri
,
A.
,
Grönman
,
A.
, and
Backman
,
J.
,
2016
, “Numerical Study of the Reynolds Number Effect on the Centrifugal Compressor Performance and Losses,”
ASME
Paper No. GT2016-56036.
4.
Denton
,
J. D.
,
1993
, “
Loss Mechanisms in Turbomachines
,”
ASME J. Turbomach.
,
115
(4), pp.
621
656
.
5.
Prust
,
H. W.
, Jr.
,
1973
, “
Turbine Design and Application
,”
National Aeronautics and Space Administration
,
Washington, DC
, Report No.
NASA-SP-290-VOL-2
.
6.
Harrison
,
S.
,
1990
, “
Secondary Loss Generation in a Linear Cascade of High-Turning Turbine Blades
,”
ASME J. Turbomach.
,
112
(4), pp.
618
624
.
7.
Weber
,
A.
,
Schreiber
,
H.-A.
,
Fuchs
,
R.
, and
Steinert
,
W.
,
2002
, “
3-D Transonic Flow in a Compressor Cascade With Shock-Induced Corner Stall
,”
ASME J. Turbomach.
,
124
(4), pp.
358
366
.
8.
Klausner
,
E.
, and
Gampe
,
U.
,
2014
, “Evaluation and Enhancement of a One-Dimensional Performance Analysis Method for Centrifugal Compressors,”
ASME
Paper No. GT2014-25141.
9.
Choi
,
M.
,
Baek
,
J.
,
Chung
,
H.
,
Oh
,
S.
, and
Ko
,
H.
,
2008
, “
Effects of the Low Reynolds Number on the Loss Characteristics in an Axial Compressor
,”
Proc. Inst. Mech. Eng. Part A: J. Power Energy
,
222
(2), pp.
209
218
.
10.
Lynch
,
S.
, and
Thole
,
K.
,
2016
, “
Comparison of the Three-Dimensional Boundary Layer on Flat Versus Contoured Turbine Endwalls
,”
ASME J. Turbomach.
,
138
(4), p.
041008
.
11.
Hergt
,
A.
,
Meyer
,
R.
, and
Engel
,
K.
,
2006
, “Experimental Investigation of Flow Control in Compressor Cascades,”
ASME
Paper No. GT2006-90415.
12.
Bousquet
,
Y.
,
Carbonneau
,
X.
,
Dufour
,
G.
,
Binder
,
N.
, and
Trebinjac
,
I.
,
2014
, “
Analysis of the Unsteady Flow Field in a Centrifugal Compressor From Peak Efficiency to Near Stall With Full-Annulus Simulations
,”
Int. J. Rot. Mach.
,
2014
, p.
729629
.
13.
Zheng
,
X.
,
Lin
,
Y.
,
Gan
,
B.
,
Zhuge
,
W.
, and
Zhang
,
Y.
,
2013
, “
Effects of Reynolds Number on the Performance of a High Pressure-Ratio Turbocharger Compressor
,”
Sci. China-Technol. Sci.
,
56
(
6
), pp.
1361
1369
.
14.
Hildebrandt
,
A.
,
Franz
,
H.
, and
Jakiel
,
C.
,
2011
, “Numerical Analysis of Effects of Centrifugal Compressor Impeller Design on Overall- and Flow Field Performance,”
ASME
Paper No. GT2011-45014.
15.
Jaatinen-Värri
,
A.
,
Turunen-Saaresti
,
T.
,
Röyttä
,
P.
,
Grönman
,
A.
, and
Backman
,
J.
,
2013
, “
Experimental Study of Centrifugal Compressor Tip Clearance and Vaneless Diffuser Flow Fields
,”
Proc. Inst. Mech. Eng. Part A: J. Power Energy
,
227
(8), pp.
885
895
.
16.
Ziegler
,
K. U.
,
Gallus
,
H. E.
, and
Niehuis
,
R.
,
2003
, “
A Study on Impeller-Diffuser Interaction—Part I: Influence on the Performance
,”
ASME J. Turbomach.
,
125
(
1
), pp.
173
182
.
17.
Jaatinen-Värri
,
A.
,
Turunen-Saaresti
,
T.
,
Grönman
,
A.
,
Röyttä
,
P.
, and
Backman
,
J.
,
2013
, “
The Tip Clearance Effects on the Centrifugal Compressor Vaneless Diffuser Flow Fields at Off-Design Conditions
,”
Tenth European Conference on Turbomachinery: Fluid Dynamics and Thermodynamics
, Lappeenranta, Finland, Apr. 15–19, Paper No.
ETC2013-065
.
18.
Shahin
,
I.
,
Alqaradawi
,
M.
,
Gadala
,
M.
, and
Badr
,
O.
,
2017
, “
On the Aero Acoustic and Internal Flows Structure in a Centrifugal Compressor With Hub Side Cavity Operating at Off Design Condition
,”
Aerosp. Sci. Technol.
,
60
, pp.
68
83
.
19.
Weber
,
A.
,
Morsbach
,
C.
,
Kügeler
,
E.
,
Rube
,
C.
, and
Wedeking
,
M.
,
2016
, “Flow Analysis of a High Flowrate Centrifugal Compressor Stage and Comparison With Test Rig Data,”
ASME
Paper No. GT2016-56551.
20.
Bousquet
,
Y.
,
Carbonneau
,
X.
,
Trébinjac
,
I.
,
Dufour
,
G.
, and
Roumeas
,
M.
,
2013
, “
Description of the Unsteady Flow Pattern From Peak Efficiency to Near Surge in a Subsonic Centrifugal Compressor Stage
,”
Tenth European Conference on Turbomachinery: Fluid Dynamics and Thermodynamics
, Lappeenranta, Finland, Apr. 15–19, pp.
917
927
.
21.
Ding
,
L.
,
Wang
,
T.
,
Yang
,
B.
,
Xu
,
W.
, and
Gu
,
C.
,
2013
, “
Experimental Investigation of the Casing Treatment Effects on Steady and Transient Characteristics in an Industrial Centrifugal Compressor
,”
Exp. Therm. Fluid Sci.
,
45
, pp.
136
145
.
22.
Yang
,
M.
,
Zheng
,
X.
,
Zhang
,
Y.
,
Bamba
,
T.
,
Tamaki
,
H.
,
Huenteler
,
J.
, and
Li
,
Z.
,
2012
, “
Stability Improvement of High-Pressure-Ratio Turbocharger Centrifugal Compressor by Asymmetric Flow Control—Part I: Non-Axisymmetrical Flow in Centrifugal Compressor
,”
ASME J. Turbomach.
,
135
(
2
), p.
021006
.
23.
Xu
,
W.
,
Wang
,
T.
,
Gu
,
C.
, and
Ding
,
L.
,
2011
, “A Study on the Influence of Hole's Diameter With Holed Casing Treatment,”
ASME
Paper No. GT2011-46167.
24.
Röyttä
,
P.
,
Grönman
,
A.
,
Jaatinen
,
A.
,
Turunen-Saaresti
,
T.
, and
Backman
,
J.
,
2009
, “
Effects of Different Blade Angle Distributions on Centrifugal Compressor Performance
,”
Int. J. Rot. Mach.
,
2009
, p. 537802.
25.
Langtry
,
R.
, and
Menter
,
F.
,
2005
, “Transition Modeling for General CFD Applications in Aeronautics,”
AIAA
Paper No. 2005-522.
26.
Aungier
,
R. H.
,
2000
,
Centrifugal Compressors: A Strategy for Aerodynamic Design and Analyses
,
ASME Press
,
New York
, p.
315
.
You do not currently have access to this content.