An optimal design of film cooling is a key factor in the effort of producing high-efficiency gas turbine. Understanding of the fluid dynamics interaction between cooling holes can help engineers to improve overall thermal effectiveness. Correct prediction through modeling is a very complex problem since multiple phenomena are involved such as mixing, turbulence, and heat transfer. The present work performs an investigation of different cooling configurations ranging from single hole up to two rows. The main objective is to evaluate the double-rows interaction and the effect on film cooling. Strong nonlinear effects are underlined by different simulations, while varying blowing ratio (BR) and geometrical configuration of cooling holes. Meanwhile an initial analysis is performed using flat plate geometry, verification and validation is then extended to realistic stage of high pressure (HP) turbine. Multiple cooling holes configurations are embedded on the pressure side (PS) and suction side (SS) of the single stage. The main outcome is the verification of the thermal effectiveness improvement obtained by cooling jets interaction of multiple rows design. The effects of curvature surface and frame of reference rotation are also evaluated, underlying the differences with standard flat plate test cases.

References

References
1.
Han
,
J. C.
,
2013
, “
Fundamental Gas Turbine Heat Transfer
,”
ASME J. Therm. Sci. Eng. Appl.
,
5
(2), p.
021007
.
2.
Gritsch
,
M.
,
Schulz
,
A.
, and
Wittig
,
S.
,
1998
, “
Adiabatic Wall Effectiveness Measurements of Film-Cooling Holes With Expanded Exits
,”
ASME J. Turbomach.
,
120
(3), pp.
549
556
.
3.
Saumweber
,
C.
, and
Schulz
,
A.
,
2012
, “
Effect of Geometry Variations on the Cooling Performance of Fan-Shaped Cooling Holes
,”
ASME J. Turbomach.
,
134
(6), p.
061008
.
4.
McGovern
,
K. T.
, and
Leylek
,
J. H.
,
2000
, “
A Detailed Analysis of Film Cooling Physics—Part II: Compound-Angle Injection With Cylindrical Holes
,”
ASME J. Turbomach.
,
122
(
1
), pp.
113
121
.
5.
Walters, D. K., and Leylek, J. H., 2000, “A Detailed Analysis of Film-Cooling Physics: Part I—Streamwise Injection With Cylindrical Holes,”
ASME J. Turbomach.
, 122(1), pp. 102–112.
6.
Sinha
,
A. K.
,
Bogard
,
D. G.
, and
Crawford
,
M. E.
,
1991
, “
Film-Cooling Effectiveness Downstream of a Single Row of Holes With Variable Density Ratio
,”
ASME J. Turbomach.
,
113
(
3
), pp.
442
449
.
7.
Saumweber
,
C.
, and
Schulz
,
A.
,
2012
, “
Free-Stream Effects on the Cooling Performance of Cylindrical and Fan-Shaped Cooling Holes
,”
ASME J. Turbomach.
,
134
(6), p.
061007
.
8.
Lim
,
C. H.
,
Pullan
,
G.
, and
Ireland
,
P.
,
2013
, “
Influence of Film Cooling Hole Angles and Geometries on Aerodynamic Loss and Net Heat Flux Reduction
,”
ASME J. Turbomach.
,
135
(5), p.
051019
.
9.
Johnson
,
B.
,
Tian
,
W.
,
Zhang
,
K.
, and
Hu
,
H.
,
2014
, “
An Experimental Study of Density Ratio Effects on the Film Cooling Injection From Discrete Holes by Using PIV and PSP Techniques
,”
Int. J. Heat Mass Transfer
,
76
, pp.
337
349
.
10.
Hyams
,
D. G.
, and
Leylek
,
J. H.
,
2000
, “
A Detailed Analysis of Film Cooling Physics—Part 3: Streamwise Injection With Shaped Holes
,”
ASME J. Turbomach.
,
122
(1), pp.
122
132
.
11.
Miao
,
J. M.
, and
Wu
,
C. Y.
,
2006
, “
Numerical Approach to Hole Shape Effect on Film Cooling Effectiveness Over Flat Plate Including Internal Impingement Cooling Chamber
,”
Int. J. Heat Mass Transfer
,
49
(5–6), pp.
919
938
.
12.
Harrison
,
K. L.
, and
Bogard
,
D. G.
,
2007
, “CFD Predictions of Film Cooling Adiabatic Effectiveness for Cylindrical Holes Embedded in Narrow and Wide Transverse Trenches,”
ASME
Paper No. GT2007-28005.
13.
Oguntade
,
H. I.
,
Andrews
,
G. E.
,
Burns
,
A. D.
,
Ingham
,
D. B.
, and
Pourkashanian
,
M.
,
2013
, “
Improved Trench Film Cooling With Shaped Trench Outlets
,”
ASME J. Turbomach.
,
135
(2), p. 021009.
14.
Konopka
,
M.
,
Jessen
,
W.
,
Meinke
,
M.
, and
Schröder
,
W.
,
2013
, “
Large-Eddy Simulation of Film Cooling in an Adverse Pressure Gradient Flow
,”
ASME J. Turbomach.
,
135
(
3
), p.
031031
.
15.
Muldoon
,
F.
, and
Acharya
,
S.
,
2009
, “
DNS Study of Pulsed Film Cooling for Enhanced Cooling Effectiveness
,”
Int. J. Heat Mass Transfer
,
52
(13–14), pp.
3118
3127
.
16.
Lee
,
K. D.
, and
Kim
,
K. Y.
,
2010
, “
Shape Optimization of a Fan-Shaped Hole to Enhance Film-Cooling Effectiveness
,”
Int. J. Heat Mass Transfer
,
53
(15–16), pp.
2996
3005
.
17.
Schmidt
,
D.
,
Sen
,
B.
, and
Bogard
,
D.
,
1996
, “
Film Cooling With Compound Angle Holes: Adiabatic Effectiveness
,”
ASME J. Turbomach.
,
118
(4), pp.
807
813
.
18.
Baldauf
,
S.
,
Scheurlen
,
M.
,
Schulz
,
A.
, and
Wittig
,
S.
,
2002
, “
Correlation of Film-Cooling Effectiveness From Thermographic Measurements at Engine Like Conditions
,”
ASME J. Turbomach.
,
124
(4), pp.
686
698
.
19.
Han
,
J. C.
, and
Mehendale
,
A. B.
,
1986
, “
Flat-Plate Film Cooling With Steam Injection Through One Row and Two Rows of Inclined Holes
,”
ASME J. Turbomach.
,
108
(1), pp.
137
144
.
20.
Kahveci
,
H. S.
,
Haldeman
,
C. W.
,
Mathison
,
R. M.
, and
Dunn
,
M. G.
,
2013
, “
Heat Transfer for the Film-Cooled Vane of a 1-1/2 Stage High-Pressure Transonic Turbine—Part I: Experimental Configuration and Data Review With Inlet Temperature Profile Effects
,”
ASME J. Turbomach.
,
135
(
2
), p. 021027.
21.
Povey
,
T.
,
Chana
,
K. S.
,
Jones
,
T. V.
, and
Hurrion
,
J.
,
2007
, “
The Effect of Hot-Streaks on HP Vane Surface and Endwall Heat Transfer: An Experimental and Numerical Study
,”
ASME J. Turbomach.
,
129
(
1
), pp.
32
43
.
22.
Ito
,
S.
,
Goldstein
,
R. J.
, and
Eckert
,
E. R. G.
,
1978
, “
Film Cooling of a Gas Turbine Blade
,”
ASME J. Eng. Power
,
100
(3), pp.
476
481
.
23.
Berhe
,
M. K.
, and
Patankar
,
S. V.
,
1999
, “
Curvature Effects on Discrete-Hole Film Cooling
,”
ASME J. Turbomach.
,
121
(4), pp.
781
791
.
24.
Abhari
,
R.
, and
Epstein
,
A.
,
1994
, “
An Experimental Study of Film Cooling in a Rotating Transonic Turbine
,”
ASME J. Turbomach.
,
116
(1), pp.
63
70
.
25.
Suryanarayanan
,
A.
,
Ozturk
,
B.
,
Schobeiri
,
M. T.
, and
Han
,
J. C.
,
2010
, “
Film-Cooling Effectiveness on a Rotating Turbine Platform Using Pressure Sensitive Paint Technique
,”
ASME J. Turbomach.
,
132
(
4
), p.
041001
.
26.
Lim
,
T. T.
,
New
,
T. H.
, and
Luo
,
S. C.
,
2001
, “
On the Development of Large-Scale Structures of a Jet Normal to a Cross Flow
,”
Phys. Fluids
,
13
(
3
), pp.
770
775
.
27.
Mahesh
,
K.
,
2013
, “
The Interaction of Jets With Crossflow
,”
Annu. Rev. Fluid Mech.
,
45
, pp.
379
407
.
28.
Moinier
,
P.
,
Muller
,
J.
, and
Giles
,
M.
,
2002
, “
Edge-Based Multigrid and Preconditioning for Hybrid Grids
,”
AIAA J.
,
40
(10), pp.
1954
1960
.
29.
Moinier
,
P.
, and
Giles
,
M.
,
2002
, “
Stability Analysis of Preconditioned Approximations of the Euler Equations on Unstructured Meshes
,”
J. Comput. Phys.
,
178
(2), pp.
498
519
.
30.
Jiang
,
Y.
,
He
,
L.
,
Capone
,
L.
, and
Romero
,
E.
,
2016
, “Investigation of Steady and Unsteady Film-Cooling Using Immersed Mesh Blocks With New Conservative Interface Scheme,”
ASME
Paper No. GT2016-57363.
31.
Charbonnier
,
D.
,
Ott
,
P.
,
Jonsson
,
M.
,
Kobke
,
T.
, and
Cottier
,
F.
,
2008
, “Comparison of Numerical Investigations With Measured Heat Transfer Performance of a Film Cooled Turbine Vane,”
ASME
Paper No. GT2008-50623.
32.
Adami
,
P.
,
Martelli
,
F.
,
Chana
,
K. S.
, and
Montomoli
,
F.
,
2003
, “Numerical Predictions of Film Cooled NGV Blades,”
ASME
Paper No. GT2003-38861.
33.
He
,
L.
, and
Oldfield
,
M. L. G.
,
2011
, “
Unsteady Conjugate Heat Transfer Modeling
,”
ASME J. Turbomach.
,
133
(3), p.
031022
.
You do not currently have access to this content.