The nonuniformity of the flow field induced by a nonaxisymmetric volute significantly degrades the stability of a turbocharger centrifugal compressor. In this paper, a nonaxisymmetric vaned diffuser is investigated as a nonaxisymmetric flow control method using both three-dimensional computational fluid dynamics (CFD) and experiment. The numerical study first focuses on the relationship between the flow field and the static pressure distortion, and the steady CFD results indicate that the positive static pressure gradient in the rotating direction facilitates flow separation in the vaned diffuser and induces a nonuniform flow field. A nonaxisymmetric flow control method with variable stagger and solidity of the vaned diffuser is developed to suppress the flow separation, and the guideline of the method suggests narrowing flow passages where the flow separates or closing diffuser vanes upstream of flow separations. Steady CFD also presents the flow field of the investigated turbocharger centrifugal compressor with volute, and flow separation is found in the flow passages near the volute tongue. Under the guidance of the nonaxisymmetric flow control method, several nonaxisymmetric vaned diffusers are designed to make the flow field uniform, which are believed to be beneficial for compressor stability. Finally, an experiment is carried out to validate the positive effects of the nonaxisymmetric vaned diffuser for stability improvement. The test data show that Non-AxisVD (with a nonaxisymmetric vaned diffuser) extends the stable flow range (SFR) of the compressor by 26% compared with the AxisVD (with an axisymmetric vaned diffuser), at the cost of acceptable decreases in the maximum total pressure ratio and peak efficiency.

References

References
1.
Baines
,
N. C.
,
2005
,
Fundamentals of Turbocharging
, Concepts ETI, Inc., White River Junction, VT, pp.
2
12
.
2.
Clenci
,
A. C.
,
Descombes
,
G.
, and
Podevin
,
P.
,
2007
, “
Some Aspects Concerning the Combination of Downsizing With Turbocharging, Variable Compression Ratio, and Variable Intake Valve Lift
,”
Proc. Inst. Mech. Eng., Part D
,
221
(
10
), pp.
1287
1294
.
3.
Ryder
,
O.
, and
Sharp
,
N.
,
2010
, “
The Impact of Future Engine and Vehicle Drivetrains on Turbocharging System Architecture
,” Nin
th International Mechanical Engineers Turbochargers and Turbocharging Conference
, London, May 19–20, pp.
1
10
.
4.
Maiboom
,
A.
,
Tauzia
,
X.
, and
Hétet
,
J. F.
,
2008
, “
Experimental Study of Various Effects of Exhaust Gas Recirculation (EGR) on Combustion and Emissions of an Automotive Direct Injection Diesel Engine
,”
J. Energy
,
33
(
1
), pp.
22
34
.
5.
Lake
,
T.
,
Stokes
,
J.
,
Murphy
,
R.
,
Osborne, R.
, and
Schamel, A.
,
2004
, “
Turbocharging Concepts for Downsized DI Gasoline Engines
,”
SAE Trans.
,
113
(
3
), pp.
105
115
.
6.
Plohberger
,
D. C.
,
Fessl
,
T.
, and
Gruber
,
F.
,
1995
, “
Advanced Gas Engine Cogeneration Technology for Special Applications
,”
ASME J. Eng. Gas Turbines Power
,
117
(
4
), pp.
826
831
.
7.
Krain
,
H.
,
Karpinski
,
G.
, and
Beversdorff
,
M.
,
2001
, “Flow Analysis in a Transonic Centrifugal Compressor Rotor Using 3-Component Laser Velocimetry,”
ASME
Paper No. 2001-GT-0315.
8.
Khalfallah
,
S.
, and
Ghenaiet
,
A.
,
2010
, “
Analyses of Impeller-Vaneless Diffuser-Scroll Interactions in a Radial Compressor
,”
Proc. Inst. Mech. Eng., Part A
,
224
(
6
), pp.
851
867
.
9.
Steglich
,
T.
,
Kitzinger
,
J.
, and
Seume
,
J. R.
,
2008
, “
Improved Diffuser/Volute Combinations for Centrifugal Compressors
,”
ASME J. Turbomach.
,
130
(
1
), p.
011014
.
10.
Xu
,
C.
, and
Amano
,
R. S.
,
2006
, “Eliminating Static Pressure Distortion by a Large Cut Back Tongue Volute,”
ASME
Paper No. GT2006-90001.
11.
Meakhail
,
T.
, and
Park
,
S. O.
,
2005
, “
A Study of Impeller-Diffuser-Volute Interaction in a Centrifugal Fan
,”
ASME J. Turbomach.
,
127
(
1
), pp.
84
90
.
12.
Cave
,
M.
, and
Di Liberti
,
J. L.
,
2001
, “
A Numerical Investigation on the Volute/Diffuser Interaction Due to the Axial Distortion at the Impeller Exit
,”
ASME J. Fluids Eng.
,
123
(
3
), pp.
475
483
.
13.
Reunanen
,
A.
,
Pitkanen
,
H.
, and
Larjola
,
J.
,
2000
, “Computational and Experimental Comparison of Different Volute Geometries in a Radial Compressor,”
ASME
Paper No. 2000-GT-0469.
14.
Zheng
,
X.
,
Zhang
,
Y.
, and
Yang
,
M.
,
2012
, “
Stability Improvement of High-Pressure-Ratio Turbocharger Centrifugal Compressor by Asymmetric Flow Control—Part II: Non-Axisymmetric Self Recirculation Casing Treatment
,”
ASME J. Turbomach.
,
135
(
2
), p.
021007
.
15.
Yang
,
M.
,
Zheng
,
X.
, and
Zhang
,
Y.
,
2012
, “
Stability Improvement of High-Pressure-Ratio Turbocharger Centrifugal Compressor by Asymmetric Flow Control—Part I: Non-Axisymmetric Flow in Centrifugal Compressor
,”
ASME J. Turbomach.
,
135
(
2
), p.
021006
.
16.
Shaaban
,
S.
, and
Seume
,
J.
,
2007
, “Aerodynamic Performance of Small Turbocharger Compressors,”
ASME
Paper No. GT2007-27558.
17.
Fatsis
,
A.
,
Pierret
,
S.
, and
Van den Braembussche
,
R.
,
1997
, “
Three-Dimensional Unsteady Flow and Forces in Centrifugal Impellers With Circumferential Distortion of the Outlet Static Pressure
,”
ASME J. Turbomach.
,
119
(
1
), pp.
94
102
.
18.
Zheng
,
X.
,
Jin
,
L.
, and
Tamaki
,
H.
,
2014
, “
Influence of Volute-Induced Distortion on the Performance of a High-Pressure-Ratio Centrifugal Compressor With a Vaneless Diffuser for Turbocharger Applications
,”
Proc. Inst. Mech. Eng., Part A
,
228
(
4
), pp.
440
450
.
19.
Zheng
,
X. Q.
,
Huenteler
,
J.
, and
Yang
,
M. Y.
,
2010
, “
Influence of the Volute on the Flow in a Centrifugal Compressor of a High-Pressure Ratio Turbocharger
,”
Proc. Inst. Mech. Eng., Part A
,
224
(
8
), pp.
1157
1169
.
20.
Lin
,
Y.
,
Zheng
,
X. Q.
, and
Jin
,
L.
,
2012
, “
A Novel Experimental Method to Evaluate the Impact of Volute's Asymmetry on the Performance of a High Pressure Ratio Turbocharger Compressor
,”
Sci. China Ser. E
,
55
(
6
), pp.
1695
1700
.
21.
Lin
,
Y.
,
2012
, “Investigation of Improving the Turbocharger Centrifugal Compressor Stability by Asymmetric Vaneless Diffuser Treatment,” Master thesis, Tsinghua University, Beijing, China (in Chinese).
22.
Ziegler
,
K. U.
,
Gallus
,
H. E.
, and
Niehuis
,
R.
,
2003
, “
A Study on Impeller-Diffuser Interaction—Part I: Influence on the Performance
,”
ASME J. Turbomach.
,
125
(
1
), pp.
173
182
.
23.
Ziegler
,
K. U.
,
Gallus
,
H. E.
, and
Niehuis
,
R.
,
2003
, “
A Study on Impeller-Diffuser Interaction—Part II: Detailed Flow Analysis
,”
ASME J. Turbomach.
,
125
(
1
), pp.
183
192
.
24.
Weiß
,
C.
,
Grates
,
D. R.
,
Thermann
,
H.
, and
Niehuis
,
R.
,
2003
, “Numerical Investigation of the Influence of the Tip Clearance on Wake Formation Inside a Radial Impeller,”
ASME
Paper No. GT2003-38279.
25.
Ziegler
,
K. U.
,
2003
, “Experimental Investigation of Impeller-Diffuser Interaction in a Centrifugal Compressor of Variable Geometry,” Ph.D. thesis, RWTH Aachen, Aachen, Germany (in German).
You do not currently have access to this content.