Problems in turbomachinery computational fluid dynamics (CFD) are often characterized by nonlinear and discontinuous responses. Ensuring the reliability of uncertainty quantification (UQ) codes in such conditions, in an autonomous way, is challenging. In this work, we suggest a new approach that combines three state-of-the-art methods: multivariate Padé approximations, optimal quadrature subsampling (OQS), and statistical learning. Its main component is the generalized least-squares multivariate Padé–Legendre (PL) approximation. PL approximations are globally fitted rational functions that can accurately describe discontinuous nonlinear behavior. They need fewer model evaluations than local or adaptive methods and do not cause the Gibbs phenomenon like continuous polynomial chaos methods. A series of modifications of the Padé algorithm allows us to apply it to arbitrary input points instead of optimal quadrature locations. This property is particularly useful for industrial applications, where a database of CFD runs is already available, but not in optimal parameter locations. One drawback of the PL approximation is that it is nontrivial to ensure reliability. To improve stability, we suggest to couple it with OQS. Our reasoning is that least-squares errors, caused by an ill-conditioned design matrix, are the main source of error. Finally, we use statistical learning methods to check smoothness and convergence. The resulting method is shown to efficiently and correctly fit thousands of partly discontinuous response surfaces for an industrial film cooling and shock interaction problem using only nine CFD simulations.

References

References
1.
Carnevale
,
M.
,
Montomoli
,
F.
,
D'Ammaro
,
A.
,
Salvadori
,
S.
, and
Martelli
,
F.
,
2013
, “
Uncertainty Quantification: A Stochastic Method for Heat Transfer Prediction Using LES
,”
ASME J. Turbomach.
,
135
(
5
), p.
051021
.
2.
Wan
,
X.
, and
Karniadakis
,
G. E.
,
2005
, “
An Adaptive Multi-Element Generalized Polynomial Chaos Method for Stochastic Differential Equations
,”
J. Comput. Phys.
,
209
(
2
), pp.
617
642
.
3.
Lin
,
G.
, and
Tartakovsky
,
A. M.
,
2007
, “
An Efficient, High-Order Multi-Element Probabilistic Collocation Method on Sparse Grids for Three-Dimensional Flow in Random Porous Media
,” American Geophysical Union, Washington, DC,
AGU Fall Meeting Abstracts
, Vol. 1, p.
1318
.http://abstractsearch.agu.org/meetings/2007/FM/H23B-1318.html
4.
Sargsyan
,
K.
,
Safta
,
C.
,
Debusschere
,
B.
, and
Najm
,
H.
,
2012
, “
Uncertainty Quantification Given Discontinuous Model Response and a Limited Number of Model Response Evaluations
,”
SIAM J. Sci. Comput.
,
34
(
1
), pp.
B44
B64
.
5.
Lucor
,
D.
,
Witteveen
,
J.
,
Constantine
,
P.
,
Schiavazzi
,
D.
, and
Iaccarino
,
G.
,
2012
, “
Comparison of Adaptive Uncertainty Quantification Approaches for Shock Wave-Dominated Flows
,”
Summer Program Center for Turbulence Research
, Stanford, CA, June 24–July 20, pp.
219
228
.https://web.stanford.edu/group/ctr/Summer/SP12/03.04_lucor.pdf
6.
Lucor
,
D.
,
Su
,
C.-H.
, and
Karniadakis
,
G. E.
,
2004
, “
Generalized Polynomial Chaos and Random Oscillators
,”
Int. J. Numer. Methods Eng.
,
60
(
3
), pp.
571
596
.
7.
Chantrasmi
,
T.
,
Doostan
,
A.
, and
Iaccarino
,
G.
,
2009
, “
Padé-Legendre Approximants for Uncertainty Analysis With Discontinuous Response Surfaces
,”
J. Comput. Phys.
,
228
(
19
), pp.
7159
7180
.
8.
Le Maitre
,
O. P.
,
Knio
,
O. M.
,
Najm
,
H. N.
, and
Ghanem
,
R. G.
,
2004
, “
Uncertainty Propagation Using Wiener-Haar Expansions
,”
J. Comput. Phys.
,
197
(
1
), pp.
28
57
.
9.
Witteveen
,
J. A. S.
, and
Iaccarino
,
G.
,
2012
, “
Simplex Stochastic Collocation With Random Sampling and Extrapolation for Nonhypercube Probability Spaces
,”
SIAM J. Sci. Comput.
,
34
(
2
), pp.
A814
A838
.
10.
Edeling
,
W. N.
,
Dwight
,
R. P.
, and
Cinnella
,
P.
,
2016
, “
Simplex-Stochastic Collocation Method With Improved Scalability
,”
J. Comput. Phys.
,
310
, pp.
301
328
.
11.
Gorodetsky
,
A.
, and
Marzouk
,
Y.
,
2014
, “
Efficient Localization of Discontinuities in Complex Computational Simulations
,”
SIAM J. Sci. Comput.
,
36
(
6
), pp.
A2584
A2610
.
12.
Sudret
,
B.
,
Marelli
,
S.
, and
Lataniotis
,
C.
,
2015
, “
Sparse Polynomial Chaos Expansions as a Machine Learning Regression Technique
,”
International Symposium on Big Data and Predictive Computational Modeling
, Munich, Germany, May 18–21, pp. 1–37.https://www.research-collection.ethz.ch/bitstream/handle/20.500.11850/111718/eth-48586-01.pdf
13.
Seshadri
,
P.
,
Narayan
,
A.
, and
Mahadevan
,
S.
,
2016
, “Optimal Quadrature Subsampling for Least Squares Polynomial Approximations,” e-print
arXiv:1601.05470
.https://128.84.21.199/abs/1601.05470v2
14.
Montomoli
,
F.
,
Carnevale
,
M.
,
D'Ammaro
,
A.
,
Massini
,
M.
, and
Salvadori
,
S.
,
2015
,
Uncertainty Quantification in Computational Fluid Dynamics and Aircraft Engines
,
Springer
,
Berlin
.
15.
Carnevale
,
M.
,
D'Ammaro
,
A.
,
Montomoli
,
F.
, and
Salvadori
,
S.
,
2014
, “Film Cooling and Shock Interaction: An Uncertainty Quantification Analysis With Transonic Flows,”
ASME
Paper No. GT2014-25024.
16.
Bungartz
,
H.-J.
, and
Griebel
,
M.
,
2004
, “
Sparse Grids
,”
Acta Numer.
,
13
, pp.
147
269
.
17.
Blatman
,
G.
, and
Sudret
,
B.
,
2011
, “
Adaptive Sparse Polynomial Chaos Expansion Based on Least Angle Regression
,”
J. Comput. Phys.
,
230
(
6
), pp.
2345
2367
.
18.
Donoho
,
D. L.
,
2006
, “
For Most Large Underdetermined Systems of Linear Equations the Minimal /1-Norm Solution is Also the Sparsest Solution
,”
Commun. Pure Appl. Math.
,
59
(
6
), pp.
797
829
.
19.
Chantrasmi
,
T.
,
Iaccarino
,
G.
,
Najm
,
H. N.
, and
Papanicolaou
,
G.
,
2011
,
Padé-Legendre Method for Uncertainty Quantification With Fluid Dynamics Applications
,
Stanford University
,
Stanford, CA
.
20.
Palar
,
P. S.
,
Tsuchiya
,
T.
, and
Parks
,
G. T.
,
2016
, “
Multi-Fidelity Non-Intrusive Polynomial Chaos Based on Regression
,”
Comput. Methods Appl. Mech. Eng.
,
305
, pp.
579
606
.
21.
Hosder
,
S.
,
Walters
,
R. W.
, and
Balch
,
M.
,
2007
, “
Efficient Sampling for Non-Intrusive Polynomial Chaos Applications With Multiple Uncertain Input Variables
,”
AIAA
Paper No. 2007-1939.
22.
Loeven
,
A.
, and
Bijl
,
H.
,
2009
, “
An Efficient Framework for Uncertainty Quantification in CFD Using Probabilistic Collocation
,”
AIAA
Paper No. 2009-2275.
23.
Guillaume
,
P.
,
Huard
,
A.
, and
Robin
,
V.
,
1998
, “
Generalized Multivariate Padé Approximants
,”
J. Approximation Theory
,
95
(
2
), pp.
203
214
.
24.
Salvadori
,
S.
,
Montomoli
,
F.
, and
Martelli
,
F.
,
2013
, “
Film-Cooling Performance in Supersonic Flows: Effect of Shock Impingement
,”
Proc. Inst. Mech. Eng., Part A
,
227
(3), pp.
295
305
.
25.
Ochs
,
M.
,
Schulz
,
A.
, and
Bauer
,
H.-J.
,
2007
, “Investigation of the Influence of Trailing Edge Shock Waves on Film Cooling Performance of Gas Turbine Airfoils,”
ASME
Paper No. GT2007-27482.
26.
Garg
,
V. K.
, and
Rigby
,
D. L.
,
1999
, “
Heat Transfer on a Film-Cooled Blade–Effect of Hole Physics
,”
Int. J. Heat Fluid Flow
,
20
(
1
), pp.
10
25
.
27.
Acharya
,
S.
, and
Leedom
,
D. H.
,
2013
, “
Large Eddy Simulations of Discrete Hole Film Cooling With Plenum Inflow Orientation Effects
,”
ASME J. Heat Transfer
,
135
(
1
), p.
011010
.
28.
Menter
,
F. R.
,
Langtry
,
R.
, and
Völker
,
S.
,
2006
, “
Transition Modelling for General Purpose CFD Codes
,”
Flow, Turbul. Combust.
,
77
(
1–4
), pp.
277
303
.
29.
Hagen
,
J. P.
, and
Kurosaka
,
M.
,
1993
, “
Corewise Cross-Flow Transport in Hairpin Vortices—The Tornado Effect
,”
Phys. Fluids A
,
5
(
12
), pp.
3167
3174
.
30.
Zhou
,
C.
,
2015
, “
Thermal Performance of Transonic Cooled Tips in a Turbine Cascade
,”
J. Propul. Power
,
31
(
5
), pp.
1268
1280
.
You do not currently have access to this content.