The present study aims to understand the flow, turbulence, and heat transfer in a single row narrow impingement channel for gas turbine heat transfer applications. Since the advent of several advanced manufacturing techniques, narrow wall cooling schemes have become more practical. In this study, the Reynolds number based on jet diameter was 15,000, with the jet plate having fixed jet hole diameters and hole spacing. The height of the channel is three times the impingement jet diameter. The channel width is four times the jet diameter of the impingement hole. The dynamics of flow and heat transfer in a single row narrow impingement channel are experimentally and numerically investigated. Particle image velocimetry (PIV) was used to reveal the detailed information of flow phenomena. PIV measurements were taken at a plane normal to the target wall along the jet centerline. The mean velocity field and the turbulent statistics generated from the mean flow field were analyzed. The experimental data from the PIV reveal that the flow is highly anisotropic in a narrow impingement channel. To support experimental data, wall-modeled large eddy simulation (LES) and Reynolds-averaged Navier–Stokes (RANS) simulations (shear stress transport k–ω, ν2−f, and Reynolds stress model (RSM)) were performed in the same channel geometry. Mean velocities calculated from the RANS and LES were compared with the PIV data. Turbulent kinetic energy budgets were calculated from the experiment, and were compared with the LES and RSM model, highlighting the major shortcomings of RANS models to predict correct heat transfer behavior for the impingement problem. Temperature-sensitive paint (TSP) was also used to experimentally obtain a local heat transfer distribution at the target and the side walls. An attempt was made to connect the complex aerodynamic flow behavior with the results obtained from heat transfer, indicating heat transfer is a manifestation of flow phenomena. The accuracy of LES in predicting the mean flow field, turbulent statistics, and heat transfer is shown in the current work as it is validated against the experimental data through PIV and TSP.

References

References
1.
Boyce
,
M. P.
,
2002
,
Gas Turbine Engineering Handbook
,
Elsevier Science
,
Burlington, MA
.
2.
Terzis
,
A.
,
2014
, “
Detailed Heat Transfer Distributions of Narrow Impingement Channels for Integrally Cast Turbine Airfoil
s,”
Ph.D. thesis
, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland.https://infoscience.epfl.ch/record/198696
3.
Claretti
,
R.
,
2013
, “
Heat and Fluid Flow Characterization of a Single-Hole-Per-Row Impingement Channel at Multiple Imping
ement Heights,”
Master's thesis
, University of Central Florida, Orlando, FL.http://stars.library.ucf.edu/cgi/viewcontent.cgi?article=3936&context=etd
4.
Florschuetz
,
L. W.
, and
Isoda
,
Y.
,
1983
, “
Flow Distributions and Discharge Coefficient for Jet Array Impingement With Initial Cross Flow
,”
ASME J. Eng. Power
,
105
(
2
), pp.
296
304
.
5.
Florschuetz
,
L. W.
,
Truman
,
C. R.
, and
Metzger
,
D. E.
,
1981
, “
Streamwise Flow and Heat Transfer Distributions for Jet Array Impingement With Cross Flow
,”
ASME J. Heat Transfer
,
103
(
2
), pp.
337
342
.
6.
Florschuetz
,
L. W.
,
Berry
,
R. A.
, and
Metzger
,
D. E.
,
1980
, “
Periodic Streamwise Variations of Heat Transfer Coefficients for Inline and Staggered Arrays of Circular Jets With Cross Flow of Spent Air
,”
ASME J. Heat Transfer
,
102
(
1
), pp.
132
137
.
7.
Chyu
,
M. K.
, and
Alvin
,
M. A.
,
2010
, “
Turbine Airfoil Aerothermal Characteristics in Future Coal–Gas-Based Power Generation Systems
,”
Heat Transfer Res.
,
41
(
7
), pp.
737
752
.
8.
Ricklick
,
M.
, and
Kapat
,
J. S.
,
2010
, “
Sidewall Effects on Heat Transfer Coefficient in a Narrow Impingement Channel
,”
J. Thermophys. Heat Transfer
,
24
(
1
), pp.
123
132
.
9.
Geers
,
L. F. G.
,
Tummers
,
M. J.
, and
Hanjalic
,
K.
,
2006
, “
Wall Imprint of Turbulent Structures and Heat Transfer in Multiple Impinging Jet Arrays
,”
J. Fluid Mech.
,
546
(
1
), pp.
255
284
.
10.
Hossain
,
J.
,
Tran
,
L. V.
,
Kapat
,
J. S.
,
Fernandez
,
E.
, and
Kumar
,
R.
,
2014
, “An Experimental Study of Detailed Flow and Heat Transfer Analysis in a Single Row Narrow Impingement Channel,”
ASME
Paper No. GT2014-26498.
11.
Terzis
,
A.
,
Skourides
,
C.
,
Ott
,
P.
,
von Wolfersdorf
,
J.
, and
Weignad
,
B.
,
2016
, “
Aerothermal Investigation of Single Row Divergent Narrow Impingement Channel by Particle Image Velocimetry and Liquid Crystal Thermography
,”
ASME J. Turbomach.
,
138
(
5
), p.
051003
.
12.
Terzis
,
A.
,
2016
, “
On the Correspondence Between Flow Structures and Convective Heat Transfer Augmentation for Multiple Jet Impingement
,”
Exp. Fluids
,
57
(9), p.
146
.
13.
Gillespie
,
D. R. H.
,
Wang
,
Z.
,
Ireland
,
P. T.
, and
Kohler
,
S. T.
,
1998
, “
Full Surface Local Heat Transfer Coefficient Measurements in a Model of an Integrally Cast Impingement Cooling Geometry
,”
ASME J. Turbomach.
,
120
(
1
), pp. 92–99.
14.
Chambers
,
A. C.
,
Gillespie
,
D. R. H.
,
Ireland
,
P. T.
, and
Dailey
,
G. M.
,
2005
, “
The Effect of Initial Cross Flow on the Cooling Performance of a Narrow Impingement Channel
,”
ASME J. Heat Transfer
,
127
(
4
), pp.
358
365
.
15.
Uysal
,
U.
,
Li
,
P. W.
,
Chyu
,
M. K.
, and
Cunha
,
F. J.
,
2006
, “
Heat Transfer on Internal Surfaces of a Duct Subjected to Impingement of a Jet Array With Varying Jet Hole-Size and Spacing
,”
ASME J. Turbomach.
,
128
(
1
), pp. 158–165.
16.
Miller
,
N.
,
Siw
,
S. C.
,
Chyu
,
M. K.
, and
Alvin
,
M. A.
,
2013
, “Effects of Jet Diameter and Surface Roughness on Internal Cooling With Single Array of Jets,”
ASME
Paper No. GT2013-95400.
17.
Fechter
,
S.
,
Terzis
,
A.
,
Ott
,
P.
,
Weigand
,
B.
,
von Wolfersdorf
,
J.
, and
Cochet
,
M.
,
2013
, “
Experimental and Numerical Investigation of Narrow Impingement Cooling Channels
,”
Int. J. Heat Mass Transfer
,
67
, pp.
1208
1219
.
18.
Hossain
,
J.
,
Fernandez
,
E.
,
Voet
,
T. M.
, and
Kapat
,
J. S.
,
2016
, “A Detailed Experimental and Numerical Investigation of Flow Physics in a Single Row Narrow Impingement Channel Using PIV, LES and RANS,”
AIAA
Paper No. 2016-4743.
19.
Zuckerman
,
M.
, and
Lior
,
N.
,
2005
, “
Impingement Heat Transfer: Correlations and Numerical Modeling
,”
ASME J. Heat Transfer
,
127
(
5
), pp.
544
552
.
20.
Hallqvist
,
T.
,
2006
, “Large Eddy Simulation of Impinging Jets With Heat Transfer,”
Ph.D. thesis
, Royal Institute of Technology, Stockholm, Sweden.https://www.mech.kth.se/thesis/2006/phd/phd_2006_thomas_hallqvist.pdf
21.
Hadziabdic
,
M.
, and
Hanjalic
,
K.
,
2008
, “
Vortical Structures and Heat Transfer in a Round Impinging Jet
,”
J. Fluid Mech.
,
596
, pp.
221
260
.
22.
Uddin
,
N.
,
2008
, “Turbulence Modeling of Complex Flows in CFD,”
Ph.D. thesis
, University of Stuttgart, Stuttgart, Germany.https://elib.uni-stuttgart.de/handle/11682/3798
23.
Lodato
,
G.
,
Vervisch
,
L.
, and
Domingo
,
P.
,
2009
, “
A Compressible Wall-Adapting Similarity Mixed Model for Large-Eddy Simulation of Impinging Round Jet
,”
Phys. Fluids
,
21
(3), p. 035102.
24.
Jefferson-Loveday
,
R. J.
, and
Tucker
,
P. G.
,
2011
, “
Wall-Resolved LES and Zonal LES of Round Jet Impingement Heat Transfer on a Flat Plate
,”
Numer. Heat Transfer
,
59
(
3
), pp.
190
208
.
25.
Shum-Kivan
,
F.
,
Duchaine
,
F.
, and
Gicquel
,
L.
,
2014
, “Large-Eddy Simulation and Conjugate Heat Transfer in a Round Impinging Jet,”
ASME
Paper No. GT2014-25152.
26.
Wieneke
,
B.
,
2014
, “
Generic A-Posteriori Uncertainty Quantification for PIV Vector
,”
17th International Symposium on Applications of Laser Techniques to Fluid Mechanics
,
Lisbon, Portugal
, July 7–10, pp. 1–9.http://ltces.dem.ist.utl.pt/lxlaser/lxlaser2014/finalworks2014/papers/03.5_2_560paper.pdf
27.
Liu
,
Q.
,
2006
, “Study of Heat Transfer Characteristics of Impinging Air Jet Using Pressure and Temperature Sensitive Luminescent Paint,”
Ph.D. thesis
, University of Central Florida, Orlando, FL.http://etd.fcla.edu/CF/CFE0000960/Liu_Quan_200605_PhD.pdf
28.
Hossain
,
J.
,
Curbelo
,
A.
,
Garrett
,
C.
,
Harrington
,
J.
,
Wang
,
W.
,
Kapat
,
J.
,
Thorpe
,
S.
, and
Maurer
,
M.
,
2017
, “
Use of Rib Turbulators to Enhance Post-Impingement Heat Transfer for Curved Surface
,”
ASME J. Eng. Gas Turbines Power
,
139
(
7
), p.
071901
.
29.
Figliola
,
R. S.
, and
Beasley
,
D. E.
,
2011
,
Theory and Design for Mechanical Measurements
,
Wiley
,
Hoboken, NJ
.
30.
Nicoud
,
F.
, and
Ducros
,
F.
,
1999
, “
Subgrid-Scale Stress Modelling Based on the Square of the Velocity Gradient Tensor
,”
Flow, Turbul., Combust.
,
62
(
3
), pp.
183
200
.
31.
Piomelli
,
U.
, and
Chasnov
,
J.
,
1996
, “
Large Eddy Simulations: Theory and Applications
,”
Turbulence and Transition Modelling
,
Kluwer Academic Publisher
,
Dordrecht, The Netherlands
, pp.
269
336
.
32.
Pope
,
S. B.
,
2000
,
Turbulent Flows
,
Cambridge University Press
,
Cambridge, UK
.
33.
Davidson
,
L.
,
2007
, “
Using Isotropic Synthetic Fluctuations as Inlet Boundary Conditions for Unsteady Simulations
,”
Adv. Appl. Fluid Mech.
,
1
(
1
), pp.
1
35
.http://www.tfd.chalmers.se/~lada/projects/inlet-boundary-conditions/Using-Isotropic-Synthetic-Fluctuations-as-Inlet-Boundary-Conditions-for-Unsteady-Simulations.pdf
34.
Cziesla
,
T.
,
Biswas
,
G.
,
Chattopadhyay
,
H.
, and
Mitra
,
N. K.
,
2001
, “
Large-Eddy Simulation of Flow and Heat Transfer in an Impinging Slot Jet
,”
Int. J. Heat Fluid Flow
,
22
(
5
), pp.
500
508
.
35.
Nishino
,
K.
,
Igarashi
,
Y.
, and
Hishida
,
K.
,
1996
, “
Turbulence Statistics in the Stagnation of an Axisymmetric Impinging Jet Flow
,”
Int. J. Heat Fluid Flow
,
17
(3), pp.
193
201
.
36.
El-Gabry
,
L. A.
, and
Kaminski
,
D. A.
,
2005
, “
Experimental Investigation of Local Heat Transfer Distribution on Smooth and Roughened Surfaces Under an Array of Angled Impinging Jets
,”
ASME J. Turbomach.
,
127
(
3
), pp. 532–544.
You do not currently have access to this content.