This paper is the second part of a two-part paper that presents a comprehensive study of the higher-order mode (HOM) mistuned forced response of an embedded rotor blisk in a multistage axial research compressor. The resonant response of the second-stage rotor (R2) in its first chordwise bending (1CWB) mode due to the second harmonic of the periodic passing of its neighboring stators (S1 and S2) is investigated computationally and experimentally at three steady loading conditions in the Purdue three-stage compressor research facility. A nonintrusive stress measurement system (NSMS, or blade tip-timing) is used to measure the blade vibration. Two reduced-order mistuning models of different levels of fidelity are used, namely, the fundamental mistuning model (FMM) and the component mode mistuning (CMM), to predict the response. Although several modes in the 1CWB modal family appear in frequency veering and high modal density regions, they do not heavily participate in the response such that very similar results are produced by the FMM and the CMM models of different sizes. A significant response amplification factor of 1.5–2.0 is both measured and predicted, which is on the same order of magnitude of what was commonly reported for low-frequency modes. In this study, a good agreement between predictions and measurements is achieved for the deterministic analysis. This is complemented by a sensitivity analysis which shows that the mistuned system is highly sensitive to the discrepancies in the experimentally determined blade frequency mistuning.

References

References
1.
D'Souza
,
K.
,
Jung
,
C.
, and
Epureanu
,
B. I.
,
2013
, “
Analyzing Mistuned Multi-Stage Turbomachinery Rotors With Aerodynamic Effects
,”
J. Fluids Struct.
,
42
, pp.
388
400
.
2.
D'Souza
,
K.
,
Saito
,
A.
, and
Epureanu
,
B. I.
,
2012
, “
Reduced-Order Modeling for Nonlinear Analysis of Cracked Mistuned Multistage Bladed-Disk Systems
,”
AIAA J.
,
50
(
2
), pp.
304
312
.
3.
Petrov
,
E. P.
,
2010
, “
A Method for Forced Response Analysis of Mistuned Bladed Disks With Aerodynamic Effects Included
,”
ASME J. Eng. Gas Turbines Power
,
132
(
6
), p.
062502
.
4.
Miyakozawa
,
T.
,
Kielb
,
R. E.
, and
Hall
,
K. C.
,
2009
, “
The Effects of Aerodynamic Asymmetric Perturbations on Forced Response of Bladed Disks
,”
ASME J. Turbomach.
,
131
(
4
), p.
041008
.
5.
Schoenenborn
,
H.
,
Retze
,
U.
,
Ziller
,
G.
, and
Waniczek
,
P.
,
2010
, “Experimental and Analytical Mistuning Analysis of a Blisk at Lab Conditions and Under Rig Conditions Using Tip Timing,”
ASME
Paper No. GT2010-22447.
6.
Seinturier
,
E.
,
Lombard
,
J.-P.
,
Dumas
,
M.
,
Dupont
,
C.
,
Sharma
,
V.
, and
Dupeux
,
J.
,
2014
, “Forced Response Prediction Methodology for the Design of HP Compressors Bladed Disks,”
ASME
Paper No. GT2004-53372.
7.
Seinturier
,
E.
,
Lombard
,
J.-P.
,
Berthillier
,
M.
, and
Sgarzi
,
O.
,
2002
, “Turbine Mistuned Forced Response Prediction: Comparison With Experimental Results,”
ASME
Paper No. GT2002-30424.
8.
Petrov
,
E.
,
Di Mare
,
L.
,
Hennings
,
H.
, and
Elliott
,
R.
,
2010
, “
Forced Response of Mistuned Bladed Disks in Gas Flow: A Comparative Study of Predictions and Full-Scale Experimental Results
,”
ASME J. Eng. Gas Turbines Power
,
132
(
5
), p.
052504
.
9.
Besem
,
F. M.
,
Kielb
,
R. E.
, and
Key
,
N. L.
,
2015
, “
Forced Response Sensitivity of a Mistuned Rotor From an Embedded Compressor Stage
,”
ASME J. Turbomach.
,
138
(
3
), p.
031002
.
10.
Besem
,
F. M.
,
Kielb
,
R. E.
,
Galpin
,
P.
,
Zori
,
L.
, and
Key
,
N. L.
,
2016
, “
Mistuned Forced Response Predictions of an Embedded Rotor in a Multistage Compressor
,”
ASME J. Turbomach.
,
138
(
6
), p.
061003
.
11.
El-Aini
,
Y. M.
,
Burge
,
J. C.
, and
Meece
,
C. E.
,
1996
, “Turbine Engine Rotor Blade Vibration Damping Device,” United Technologies Corporation, Hartford, CT, U.S. Patent No.
5,498,137
.https://www.google.com/patents/US5498137
12.
Duan
,
Y.
,
Zang
,
C.
, and
Petrov
,
E. P.
,
2016
, “
Forced Response Analysis of High-Mode Vibrations for Mistuned Bladed Disks With Effective Reduced-Order Models
,”
ASME J. Eng. Gas Turbines Power
,
138
(
11
), p.
112502
.
13.
Feiner
,
D. M.
, and
Griffin
,
J. H.
,
2002
, “
A Fundamental Model of Mistuning for a Single Family of Modes
,”
ASME J. Turbomach.
,
124
(
4
), pp.
597
605
.
14.
Feiner
,
D. M.
, and
Griffin
,
J. H.
,
2004
, “
Mistuning Identification of Bladed Disks Using a Fundamental Mistuning Model—Part I: Theory
,”
ASME J. Turbomach.
,
126
(
1
), pp.
150
158
.
15.
Lim
,
S.-H.
,
Bladh
,
R.
,
Castanier
,
M. P.
, and
Pierre
,
C.
,
2007
, “
Compact, Generalized Component Mode Mistuning Representation for Modeling Bladed Disk Vibration
,”
AIAA J.
,
45
(
9
), pp.
2285
2298
.
16.
Kielb
,
R. E.
,
Feiner
,
D. M.
,
Griffin
,
J. H.
, and
Miyakozawa
,
T.
,
2004
, “Flutter of Mistuned Bladed Disks and Blisks With Aerodynamic and FMM Structural Coupling,”
ASME
Paper No. GT2004-54315.
17.
He
,
Z.
,
Epureanu
,
B. I.
, and
Pierre
,
C.
,
2007
, “
Fluid-Structural Coupling Effects on the Dynamics of Mistuned Bladed Disks
,”
AIAA J.
,
45
(
3
), pp.
552
561
.
18.
Li
,
J.
,
Aye-Addo
,
N.
,
Kormanik
,
N.
, III
,
Matthews
,
D.
,
Key
,
N. L.
, and
Kielb
,
R. E.
,
2017
, “Mistuned Higher-Order Mode Forced Response of an Embedded Compressor Rotor—Part I: Steady and Unsteady Aerodynamics,”
ASME
Paper No. GT2017-64633.
19.
Waite
,
J. J.
, and
Kielb
,
R. E.
,
2014
, “Physical Understanding and Sensitivities of LPT Flutter,”
ASME
Paper No. GT2014-25133.
20.
Feiner
,
D. M.
, and
Griffin
,
J. H.
,
2004
, “
Mistuning Identification of Bladed Disks Using a Fundamental Mistuning Model—Part II: Application
,”
ASME J. Turbomach.
,
126
(
1
), pp.
159
165
.
21.
Hall
,
K. C.
,
Thomas
,
J. P.
, and
Clark
,
W. S.
,
2002
, “
Computation of Unsteady Nonlinear Flows in Cascades Using a Harmonic Balance Technique
,”
AIAA J.
,
40
(
5
), pp.
879
886
.
22.
Lazan
,
B. J.
,
1968
,
Damping of Materials and Members in Structural Mechanics
,
Pergamon Press
, Oxford, NY.
23.
Pierre
,
C.
, and
Murthy
,
D. V.
,
1992
, “
Aeroelastic Modal Characteristics of Mistuned Blade Assemblies—Mode Localization and Loss of Eigenstructure
,”
AIAA J.
,
30
(
10
), pp.
2483
2496
.
24.
Salhi
,
B.
,
Lardiès
,
J.
,
Berthillier
,
M.
,
Voinis
,
P.
, and
Bodel
,
C.
,
2008
, “
Modal Parameter Identification of Mistuned Bladed Disks Using Tip Timing Data
,”
J. Sound Vib.
,
314
(
3–5
), pp.
885
906
.
25.
Huang
,
Y.
,
Dimitriadis
,
G.
,
Kielb
,
R. E.
, and
Li
,
J.
,
2017
, “System Eigenvalue Identification of Mistuned Bladed Disks Using Least-Squares Complex Frequency-Domain Method,”
ASME
Paper No. GT2017-63008.
26.
Whitehead
,
D. S.
,
1966
, “
Effect of Mistuning on the Vibration of Turbomachine Blades Induced by Wakes
,”
J. Mech. Eng. Sci.
,
8
(
1
), pp.
15
21
.
27.
Nikolic
,
M.
,
2002
,
New Insights Into the Blade Mistuning Problem
,
Imperial College London
,
London
.
You do not currently have access to this content.