Effusion cooling has been a popular technology integrated into the design of gas turbine combustor liners. A staggering amount of research was completed that quantified performance with respect to operating conditions and cooling hole geometric properties; however, most of these investigations did not address the influence of the manufacturing process on the hole shape. This study completed an adiabatic wall numerical analysis using the realizable k–ϵ turbulence model of a laser-drilled hole that had a nozzled profile with an area ratio of 0.24 and five additional cylindrical, nozzled, diffusing, and fileted holes that yielded the same hole mass flow rate at representative engine conditions. The traditional methods for quantifying blowing ratio yielded the same value for all holes that was not useful considering the substantial differences in film cooling performance. It was proposed to define hole mass flux based on the outlet y-cross-sectional area projected onto the inclination angle plane. This gave blowing ratios that correlated to better and worse cooling performance for the diffusing and nozzled holes, respectively. The diffusing hole delivered the best film cooling due to having the lowest effluent velocity and greatest amount of in-hole turbulent production, which coincided with the worst discharge coefficient.

References

References
1.
Bogard
,
D. G.
, and
Thole
,
K. A.
,
2006
, “
Gas Turbine Film Cooling
,”
J. Propul. Power
,
22
(
2
), pp.
249
270
.
2.
Thurman
,
D.
,
Poinsatte
,
P.
,
Ameri
,
A.
,
Culley
,
D.
,
Raghu
,
S.
, and
Shyam
,
V.
,
2016
, “
Investigation of Spiral and Sweeping Holes
,”
ASME J. Turbomach.
,
138
(
9
), p.
091007
.
3.
Proietti
,
A.
,
Pranzitelli
,
A.
,
Andrews
,
G. E.
,
Biancolini
,
M. E.
,
Ingham
,
D. B.
, and
Pourkashanian
,
M.
,
2015
, “
Multi-Objective CFD Optimisation of Shaped Hole Film Cooling With Mesh Morphing
,”
ASME
Paper No. GT2015–42249.
4.
Klavetter
,
S. R.
,
McClintic
,
J. W.
,
Bogard
,
D. G.
,
Dees
,
J. E.
,
Laskowski
,
G. M.
, and
Briggs
,
R.
,
2016
, “
The Effect of Rib Turbulators on Film Cooling Effectiveness of Round Compound Angle Holes Fed by an Internal Cross-Flow
,”
ASME J. Turbomach.
,
138
(
12
), p.
121006
.
5.
Miao
,
J.-M.
, and
Wu
,
C.-Y.
,
2006
, “
Numerical Approach to Hole Shape Effect on Film Cooling Effectiveness Over Flat Plate Including Internal Impingement Cooling Chamber
,”
Int. J. Heat Mass Transfer
,
49
(
5
), pp.
919
938
.
6.
Na
,
S.
, and
Shih
,
T. I. P.
,
2007
, “
Increasing Adiabatic Film-Cooling Effectiveness by Using an Upstream Ramp
,”
ASME J. Heat Transfer
,
129
(
4
), pp.
464
471
.
7.
Fujimoto
,
S.
,
2012
, “
Large Eddy Simulation of Film Cooling Flows Using Octree Hexahedral Meshes
,”
ASME
Paper No. GT2012–70090.
8.
Montomoli
,
F.
,
Massini
,
M.
,
Salvadori
,
S.
, and
Martelli
,
F.
,
2012
, “
Geometrical Uncertainty and Film Cooling: Fillet Radii
,”
ASME J. Turbomach.
,
134
(
1
), p.
011019
.
9.
Dong
,
R. L.
,
Shi
,
H. H.
,
Chen
,
W.
, and
Zhang
,
X. D.
,
2013
, “
Numerical Simulation of Hole Shapes Effect on Film Cooling Effectiveness and Aerodynamics Loss Over Flat Plate
,”
Adv. Mater. Res.
,
614–615
, pp.
216
221
.
10.
Zhang
,
C.
,
Liu
,
J.-J.
,
Wang
,
Z.
, and
An
,
B.-T.
,
2013
, “
The Effects of Biot Number on the Conjugate Film Cooling Effectiveness Under Different Blowing Ratios
,”
ASME
Paper No. GT2013–94041.
11.
Ryan
,
K. J.
,
Coletti
,
F.
,
Elkins
,
C. J.
, and
Eaton
,
J. K.
,
2015
, “
Building Block Experiments in Discrete Hole Film Cooling
,”
ASME
Paper No. GT2015–43731.
12.
Leylek
,
J. H.
, and
Zerkle
,
R. D.
,
1994
, “
Discrete-Jet Film Cooling: A Comparison of Computational Results With Experiments
,”
ASME J. Turbomach.
,
116
(
3
), pp.
358
368
.
13.
Yeo
,
C. Y.
,
Tam
,
S. C.
,
Jana
,
S.
, and
Lau
,
M. W. S.
,
1994
, “
A Technical Review of the Laser Drilling of Aerospace Materials
,”
J. Mater. Process. Technol.
,
42
(
1
), pp.
15
49
.
14.
Bandyopadhyay
,
S.
,
Sundar
,
J. K. S.
,
Sundararajan
,
G.
, and
Joshi
,
S. V.
,
2002
, “
Geometrical Features and Metallurgical Characteristics of Nd:YAG Laser Drilled Holes in Thick IN718 and Ti–6Al–4V Sheets
,”
J. Mater. Process. Technol.
,
127
(
1
), pp.
83
95
.
15.
Voisey
,
K.
, and
Clyne
,
T.
,
2004
, “
Laser Drilling of Cooling Holes Through Plasma Sprayed Thermal Barrier Coatings
,”
Surf. Coat. Technol.
,
176
(
3
), pp.
296
306
.
16.
Sezer
,
H. K.
, and
Li
,
L.
,
2009
, “
Mechanisms of Acute Angle Laser Drilling Induced Thermal Barrier Coating Delamination
,”
ASME J. Manuf. Sci. Eng.
,
131
(
5
), p.
051014
.
17.
McNally
,
C. A.
,
Folkes
,
J.
, and
Pashby
,
I. R.
,
2004
, “
Laser Drilling of Cooling Holes in Aeroengines: State of the Art and Future Challenges
,”
Mater. Sci. Technol.
,
20
(
7
), pp.
805
813
.
18.
Harrison
,
K. L.
, and
Bogard
,
D. G.
,
2008
, “
Comparison of RANS Turbulence Models for Prediction of Film Cooling Performance
,”
ASME
Paper No. GT2008–51423.
19.
Menter
,
F. R.
,
Kuntz
,
M.
, and
Langtry
,
R.
,
2003
, “
Ten Years of Industrial Experience With the SST Turbulence Model
,”
Turbul. Heat Mass Transfer
,
4
(
1
), pp.
625
632
.http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.460.2814&rep=rep1&type=pdf
20.
Oguntade
,
H. I.
,
Andrews
,
G. E.
,
Burns
,
A.
,
Ingham
,
D. B.
, and
Pourkashanian
,
M.
,
2013
, “
Improved Trench Film Cooling With Shaped Trench Outlets
,”
ASME J. Turbomach.
,
135
(
2
), p.
021009
.
21.
Colban
,
W. F.
,
Thole
,
K. A.
, and
Bogard
,
D. G.
,
2011
, “
A Film-Cooling Correlation for Shaped Holes on a Flat-Plate Surface
,”
ASME J. Turbomach.
,
133
(
1
), p.
011002
.
22.
Cheng-Xiong
,
P.
,
Jing-Zhou
,
Z.
, and
Ke-Nan
,
H.
,
2014
, “
Numerical Investigation of Partial Blockage Effect on Film Cooling Effectiveness
,”
Math. Probl. Eng.
,
2014
, p.
167193
.
23.
ANSYS,
2016
, “
ANSYS® Release 17.0: ANSYS FLUENT User's Guide
,” ANSYS, Inc., Canonsburg, PA.
24.
Shih
,
T.-H.
,
Liou
,
W. W.
,
Shabbir
,
A.
,
Yang
,
Z.
, and
Zhu
,
J.
,
1995
, “
A New k–ϵ Eddy Viscosity Model for High Reynolds Number Turbulent Flows
,”
Comput. Fluids
,
24
(
3
), pp.
227
238
.
25.
Wolfshtein
,
M.
,
1969
, “
The Velocity and Temperature Distribution of One-Dimensional Flow With Turbulence Augmentation and Pressure Gradient
,”
Int. J. Heat Mass Transfer
,
12
(3), pp.
301
318
.
26.
Esgar
,
J. B.
,
1971
, “
Turbine Cooling-Its Limitations and Its Future
,” NASA Lewis Research Center, Cleveland, OH, Technical Report No.
NASA-TM-X-66702
https://ntrs.nasa.gov/search.jsp?R=19710007910
27.
McClintic
,
J. W.
,
Wilkes
,
E. K.
,
Bogard
,
D. G.
,
Dees
,
J. E.
,
Laskowski
,
G. M.
, and
Briggs
,
R.
,
2015
, “
Near-Hole Thermal Field Measurements for Round Compound Angle Film Cooling Holes Fed by Cross-Flow
,”
ASME
Paper No. GT2015–43949.
28.
Eça
,
L.
, and
Hoekstra
,
M.
,
2014
, “
A Procedure for the Estimation of the Numerical Uncertainty of CFD Calculations Based on Grid Refinement Studies
,”
J. Comput. Phys.
,
262
, pp.
104
130
.
29.
Haven
,
B. A.
, and
Kurosaka
,
M.
,
1997
, “
Kidney and Anti-Kidney Vortices in Crossflow Jets
,”
J. Fluid Mech.
,
352
, pp.
27
64
.
30.
Bohn
,
D.
, and
Krewinkel
,
R.
,
2009
, “
Conjugate Simulation of the Effects of Oxide Formation in Effusion Cooling Holes on Cooling Effectiveness
,”
ASME
Paper No. GT2009-59081.
31.
Tyagi
,
M.
, and
Acharya
,
S.
,
2003
, “
Large Eddy Simulation of Film Cooling Flow From an Inclined Cylindrical Jet
,”
ASME J. Turbomach.
,
125
(
4
), pp.
734
742
.
32.
Bogard
,
D. G.
,
2006
, “
Airfoil Film Cooling
,”
The Gas Turbine Handbook
, Vol.
4
,
National Energy Technology Laboratory
,
Morgantown, WV
, pp.
309
321
.
You do not currently have access to this content.