In order to predict oscillating loads on a structure, time-linearized methods are fast enough to be routinely used in design and optimization steps of a turbomachine stage. In this work, frequency-domain time-linearized Navier–Stokes computations are proposed to predict the unsteady separated flow generated by an oscillating bump in a transonic nozzle. The influence of regressive pressure waves on the aeroelastic stability is investigated. This case is representative of flutter of a compressor blade submitted to downstream stator potential effects. The influence of frequency is first investigated on a generic oscillating bump to identify the most unstable configuration. Introducing backward traveling pressure waves, it is then showed that aeroelastic stability of the system depends on the phase shift between the wave's source and the bump motion. Finally, feasibility of active control through backward traveling pressure waves is evaluated. The results show a high stabilizing effect even for low amplitude, opening new perspectives for the active control of choke flutter.

References

1.
Clark
,
W. S.
, and
Hall
,
K. C.
,
2000
, “
A Time-Linearized Navier–Stokes Analysis of Stall Flutter
,”
ASME J. Turbomach.
,
122
(
3
), pp.
467
476
.
2.
Campobasso
,
M.
, and
Giles
,
M.
,
2003
, “
Effects of Flow Instabilities on the Linear Analysis of Turbomachinery Aeroelasticity
,”
J. Propul. Power
,
19
(
2
), pp. 250–259.
3.
Kersken
,
H.-P.
,
Frey
,
C.
,
Voigt
,
C.
, and
Ashcroft
,
G.
,
2012
, “
Time-Linearized and Time-Accurate 3D RANS Methods for Aeroelastic Analysis in Turbomachinery
,”
ASME J. Turbomach.
,
134
(
5
), p.
051024
.
4.
Chassaing
,
J.-C.
, and
Gerolymos
,
G.
,
2008
, “
Time-Linearized Time-Harmonic 3D Navier-Stokes Shock-Capturing Schemes
,”
Int. J. Numer. Methods Fluids
,
56
(
3
), pp. 297–303.
5.
Ipsen
,
I. C.
, and
Meyer
,
C. D.
,
1998
, “
The Idea Behind Krylov Methods
,”
Am. Math. Mon.
,
105
(10), pp.
889
899
.
6.
Chassaing
,
J.
,
Gerolymos
,
G.
, and
Jeremiasz
,
J.
,
2006
, “GMRES Solution of Compressible Linearized Navier-Stokes Equations Without Pseudo-Time-Marching,”
AIAA
Paper No. 2006-688.
7.
Szechenyi
,
E.
,
1987
, “
Understanding Fan Blade Flutter Through Linear Cascade Aeroelastic Testing
,”
Aeroelasticity in Axial-Flow Turbomachines
, Vol.
1
,
M. F.
Platzer
, and
F. O.
Carta
, eds., Defense Technical Information Center, Fort Belvoir, VA, AGARD Manual AD-A181 646.
8.
Aotsuka, M., and Murooka, T.,
2014
, “Numerical Analysis of Fan Transonic Stall Flutter,”
ASME
Paper No. GT2014-26703.
9.
Vahdati
,
M.
, and
Cumpsty
,
N.
,
2016
, “
Aeroelastic Instability in Transonic Fans
,”
ASME J. Eng. Gas Turbines Power
,
138
(2), p.
022604
.
10.
Ferrand
,
P.
,
1987
, “Parametric Study of Choke Flutter With a Linear Theory,”
Advanced Technology for Aero Gas Turbine Components
, North Atlantic Treaty Organization, Brussels, Belgium, AGARD-CP-421.
11.
Atassi
,
H.
,
Fang
,
J.
, and
Ferrand
,
P.
,
1995
, “Acoustic Blockage Effects in Unsteady Transonic Nozzle and Cascade Flows,” AIAA Paper No. 95-0303.
12.
Ferria
,
H.
,
2007
, “Experimental Campaign on a Generic Model for Fluid Structure Interaction Studies,”
Master's thesis
, KTH Royal Institute of Technology, Stockholm, Sweden.https://www.diva-portal.org/smash/get/diva2:459036/FULLTEXT01.pdf
13.
Allegret-Bourdon
,
D.
,
2004
, “Experimental Study of Fluid-Structure Interactions on a Generic Model,”
Licentiate thesis
, KTH Royal Institute of Technology, Stockholm, Sweden.https://www.diva-portal.org/smash/get/diva2:7787/FULLTEXT01.pdf
14.
Andrinopoulos
,
N.
,
Vogt
,
D.
,
Hu
,
J.
, and
Fransson
,
T.
,
2008
, “Design and Testing of a Vibrating Test Object for Investigating Fluid-Structure Interaction,”
ASME
Paper No. GT2008-50740.
15.
Bron
,
O.
,
Ferrand
,
P.
, and
Fransson
,
T. H.
,
2006
, “
Experimental and Numerical Study of Non-Linear Interactions in Two Dimensional Transonic Nozzle Flow
,”
11th International Symposium on Unsteady Aerodynamics, Aeroacoustics and Aeroelasticity of Turbomachines
(
ISUAAAT
), Moscow, Russia, Sept. 4–8, pp. 463–481.
16.
Marshall
,
J.
, and
Imregun
,
M.
,
1996
, “
A Review of Aeroelasticity Methods With Emphasis on Turbomachinery Applications
,”
J. Fluids Struct.
,
10
(3), pp.
237
267
.
17.
Verdon
,
J.
,
1987
, “
Linearized Unsteady Aerodynamic Theory
,”
Aeroelasticity in Axial-Flow Turbomachines
, Vol.
1
,
M. F.
Platzer
, and
F. O.
Carta
, eds., North Atlantic Treaty Organization, Brussels, Belgium, AGARD Manual AD-A181 646.
18.
Smati
,
L.
,
Aubert
,
S.
, and
Ferrand
,
P.
,
1996
, “
Numerical Study of Unsteady Shock Motion to Understand Transonic Flutter
,”
349th EUROMECH-Colloquium: Simulation of Fluid-Structure Interaction in Aeronautics
, Gottingen, Germany, Sept. 16–19.
19.
Smati
,
L.
,
Aubert
,
S.
,
Ferrand
,
P.
, and
Masao
,
F.
,
1997
, “
Comparison of Numerical Schemes to Investigate Blade Flutter
,”
Eighth International Symposium of Unsteady Aerodynamics, Aeroacoustics and Aeroelasticity of Turbomachines
(
ISUAAAT
), Stockholm, Sweden, Sept. 14–18, pp. 749–763.
20.
Philit
,
M.
,
Blanc
,
L.
,
Aubert
,
S.
,
Lolo
,
W.
,
Ferrand
,
P.
, and
Thouverez
,
F.
,
2011
, “
Frequency Parametrization to Numerically Predict Flutter in Turbomachinery
,”
Fourth International Conference on Computational Methods for Coupled Problems in Science and Engineering
, Kos Island, Greece, June 20–22.
21.
Philit
,
M.
,
Ferrand
,
P.
,
Labit
,
S.
,
Chassaing
,
J.-C.
,
Aubert
,
S.
, and
Fransson
,
T.
,
2012
, “
Derivated Turbulence Model to Predict Harmonic Loads in Transonic Separated Flows Over a Bump
,”
28th International Congress of Aeronautical Sciences
(
ICAS
), Brisbane, Australia, Sept. 23–28, pp. 2713–2723.http://www.diva-portal.org/smash/record.jsf?pid=diva2%3A647189&dswid=-9940
22.
Rendu
,
Q.
,
Philit
,
M.
,
Labit
,
S.
,
Chassaing
,
J.-C.
,
Rozenberg
,
Y.
,
Aubert
,
S.
, and
Ferrand
,
P.
,
2015
, “
Time-Linearized and Harmonic Balance Navier-Stokes Computations of a Transonic Flow Over an Oscillating Bump
,”
14th International Symposium on Unsteady Aerodynamics, Aeroacoustics and Aeroelasticity of Turbomachines
(ISUAAAT), Stockholm, Sweden, Sept. 8–11, Paper No.
S11-5
.https://www.researchgate.net/publication/291820780_Time-Linearized_and_Harmonic_Balance_Navier-Stokes_Computations_of_a_Transonic_Flow_over_an_Oscillating_Bump
23.
Wilcox
,
D. C.
,
1988
, “
Reassessment of the Scale Determining Equation for Advanced Turbulence Models
,”
AIAA J.
,
26
(
11
) , pp. 1299–1310.
24.
Philit
,
M.
,
2013
, “
Modélisation, simulation et analyse des instationnarités en écoulement transsonique décollé en vue d'application a l'aéroélasticité des turbomachines
,” Ph.D. thesis, Ecole Centrale de Lyon, Lyon, France.
25.
Saad
,
Y.
, and
Schultz
,
M.
,
1986
, “
GMRES: A Generalized Minimal Residual Algorithm for Solving Nonsymmetric Linear Systems
,”
SIAM J. Sci. Stat. Comput.
,
7
(
3
), pp. 856–869.http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=D6B6680EE4209988F125B700624D0D82?doi=10.1.1.476.951&rep=rep1&type=pdf
26.
Labit
,
S.
,
Chassaing
,
J.-C.
,
Philit
,
M.
,
Aubert
,
S.
, and
Ferrand
,
P.
,
2016
, “
Time-Harmonic Navier–Stokes Computations of Forced Shock-Wave Oscillations in a Transonic Nozzle
,”
Comput. Fluids
,
127
, pp. 102–114.
27.
Bron
,
O.
,
2004
, “
Numerical and Experimental Study of the Shock-Boundary Layer Interaction in Unsteady Transonic Flow
,”
Ph.D. thesis
, Ecole Centrale de Lyon, Lyon, France.http://kth.diva-portal.org/smash/record.jsf?pid=diva2%3A9523&dswid=8352
28.
Wilcox
,
D. C.
,
2008
, “
Formulation of the k–ω Turbulence Model Revisited
,”
AIAA J.
,
46
(
11
), pp. 2823–2838.
29.
Gerolymos
,
G.
, and
Vallet
,
I.
,
1997
, “
Near-Wall Reynolds-Stress Three-Dimensional Transonic Flows Computation
,”
AIAA J.
,
35
(
2
), pp. 228–236.
30.
Rendu
,
Q.
,
Philit
,
M.
,
Rozenberg
,
Y.
,
Aubert
,
S.
, and
Ferrand
,
P.
,
2015
, “
Regularization of Wilcox (2006) k–ω Turbulence Model and Validation on Shock-Wave/Boundary Layer Interaction
,”
12th International Symposium on Experimental and Computational Aerothermodynamics of Internal Flows
(ISAIF), Genova, Italy, July 13–16, Paper No.
119
.https://www.researchgate.net/publication/283576585_Regularization_of_Wilcox_2006_k-o_turbulence_model_and_validation_on_shock_waveboundary_layer_interaction
31.
Corral
,
R.
, and
Vega
,
A.
,
2016
, “
The Low Reduced Frequency Limit of Vibrating Airfoils—Part I: Theoretical Analysis
,”
ASME J. Turbomach.
,
138
(
2
), p.
021004
.
You do not currently have access to this content.