Experimentally evaluating gas turbine cooling schemes is generally prohibitive at engine conditions. Thus, researchers conduct film cooling experiments near room temperature and attempt to scale the results to engine conditions. An increasingly popular method of evaluating adiabatic effectiveness employs pressure sensitive paint (PSP) and the heat–mass transfer analogy. The suitability of mass transfer methods as a substitute for thermal methods is of interest in the present work. Much scaling work has been dedicated to the influence of the coolant-to-freestream density ratio (DR), but other fluid properties also differ between experimental and engine conditions. Most notably in the context of an examination of the ability of PSP to serve as a proxy for thermal methods are the properties that directly influence thermal transport. That is, even with an adiabatic wall, there is still heat transfer between the freestream flow and the coolant plume, and the mass transfer analogy would not be expected to account for the specific heat or thermal conductivity distributions within the flow. Using various coolant gases (air, carbon dioxide, nitrogen, and argon) and comparing with thermal experiments, the efficacy of the PSP method as a direct substitute for thermal measurements was evaluated on a cylindrical leading edge model with compound coolant injection. The results thus allow examination of how the two methods respond to different property variations. Overall, the PSP technique was found to overpredict the adiabatic effectiveness when compared to the results obtained from infrared (IR) thermography, but still reveals valuable information regarding the coolant flow.

References

1.
Pietrzyk
,
J. R.
,
Bogard
,
D. G.
, and
Crawford
,
M. E.
,
1990
, “
Effects of Density Ratio on the Hydrodynamics of Film Cooling
,”
ASME J. Turbomach.
,
112
(
3
), pp.
437
443
.
2.
Thole
,
K. A.
,
Sinha
,
A. K.
,
Bogard
,
D. G.
, and
Crawford
,
M. E.
,
1992
, “
Mean Temperature Measurements of Jets With a Crossflow for Gas Turbine Film Cooling Application
,”
Third International Symposium on Transport Phenomena and Dynamics of Rotating Machinery
(
ISROMAC)
, Honolulu, HI, Apr. 1–4, pp.
69
85
.http://adsabs.harvard.edu/abs/1992rmtp.proc...69T
3.
Sinha
,
A. K.
,
Bogard
,
D. G.
, and
Crawford
,
M. E.
,
1991
, “
Film Cooling Downstream of a Single Row of Holes With Variable Density Ratio
,”
ASME J. Turbomach.
,
113
(
3
), pp.
442
449
.
4.
Rutledge
,
J. L.
, and
Polanka
,
M. D.
,
2014
, “
Computational Fluid Dynamics Evaluations of Unconventional Film Cooling Scaling Parameters on a Simulated Turbine Blade Leading Edge
,”
ASME J. Turbomach.
,
136
(
10
), p.
101006
.
5.
Greiner
,
N. J.
,
Polanka
,
M. D.
, and
Rutledge
,
J. L.
,
2015
, “
Scaling of Film Cooling Performance From Ambient to Engine Temperatures
,”
ASME J. Turbomach.
,
137
(
7
), p.
071007
.
6.
Rutledge
,
J. L.
,
Robertson
,
D.
, and
Bogard
,
D. G.
,
2006
, “
Degradation of Film Cooling Performance on a Turbine Vane Suction Side Due to Surface Roughness
,”
ASME J. Turbomach.
,
128
(
3
), pp.
547
554
.
7.
Ekkad
,
S. V.
,
Han
,
J. C.
, and
Du
,
H.
,
1998
, “
Detailed Film Cooling Measurements on a Cylindrical Leading Edge Model: Effect of Free-Stream Turbulence and Coolant Density
,”
ASME J. Turbomach.
,
120
(
4
), pp.
799
807
.
8.
Rutledge
,
J. L.
, and
Polanka
,
M. D.
,
2015
, “
Waveforms of Time-Resolved Film-Cooling Parameters on a Leading-Edge Model
,”
J. Propul. Power
,
31
(
1
), pp.
253
264
.
9.
Narzary
,
D. P.
,
Liu
,
K. C.
,
Rallabandi
,
A. P.
, and
Han
,
J. C.
,
2012
, “
Influence of Coolant Density on Turbine Blade Film-Cooling Using Pressure Sensitive Paint Technique
,”
ASME J. Turbomach.
,
134
(
3
), p.
031006
.
10.
Eckert
,
E. R. G.
,
Sakamoto
,
H.
, and
Simon
,
T. W.
,
2001
, “
The Heat/Mass Transfer Analogy Factor, Nu/Sh, for Boundary Layers on Turbine Blade Profiles
,”
Int. J. Heat Mass Transfer
,
44
(
6
), pp.
1223
1233
.
11.
Jones
,
T. V.
,
1999
, “
Theory for the Use of Foreign Gas in Simulating Film Cooling
,”
Int. J. Heat Fluid Flow
,
20
(
3
), pp.
349
354
.
12.
Ekkad
,
S. V.
,
Ou
,
S.
, and
Rivir
,
R. B.
,
2004
, “
A Transient Infrared Thermography Method for Simultaneous Film Cooling Effectiveness and Heat Transfer Coefficient Measurements From a Single Test
,”
ASME J. Turbomach.
,
126
(
4
), pp.
597
603
.
13.
Crafton
,
J.
,
Fonov
,
S.
,
Forlines
,
R.
, and
Palluconi
,
S.
,
2013
, “Development of Pressure-Sensitive Paint Systems for Low Speed Flows and Large Wind Tunnels,”
AIAA
Paper No. 2013-0482.
14.
Rutledge
,
J. L.
,
2009
, “
Pulsed Film Cooling on a Turbine Blade Leading Edge
,”
Ph.D. dissertation
, Air Force Institute of Technology, Wright-Patterson AFB, OH.http://www.dtic.mil/docs/citations/ADA504905
15.
Touloukian
,
Y. S.
,
Saxena
,
S. C.
, and
Hestermans
,
P.
,
1970
,
Thermophysical Properties of Matter, 11: Viscosity. Nonmetallic Gases and Liquids
,
IFI/Plenum
,
New York
.
16.
Touloukian
,
Y. S.
, and
Makita
,
T.
,
1970
,
Thermophysical Properties of Matter, 6: Specific Heat. Nonmetallic Gases and Liquids
,
IFI/Plenum
,
New York
.
17.
Touloukian
,
Y. S.
,
Liley
,
P. E.
, and
Saxena
,
S. C.
,
1970
,
Thermophysical Properties of Matter, 3: Thermal Conductivity. Nonmetallic Gases and Liquids
,
IFI/Plenum
,
New York
.
18.
Bird
,
R. B.
,
Stewart
,
W. E.
, and
Lightfoot
,
E. N.
,
1960
,
Transport Phenomena
,
Wiley
,
New York
, pp.
510
512
.
19.
Wiese
,
C. J.
,
Rutledge
,
J. L.
,
Polanka
,
M. D.
, and
Ashby
,
R. W.
,
2015
, “Film Coolant Property Variation in Scaling Gas Turbine Cooling Effectiveness,”
AIAA
Paper No. 2016-0904.
20.
Kline
,
S. J.
, and
McClintock
,
F. A.
,
1953
, “
Describing Uncertainties in Single-Sample Experiments
,”
Mech. Eng.
,
75
(
1
), pp.
3
8
.
21.
Wiese
,
C. J.
,
2015
, “
Influence of Coolant Flow Rate Parameters in Scaling Gas Turbine Cooling
Effectiveness,” M.S. thesis, Air Force Institute of Technology, Wright-Patterson AFB, OH.
You do not currently have access to this content.