The interaction of flow and film-cooling effectiveness between jets of double-jet film-cooling (DJFC) holes on a flat plate is studied experimentally. The time-averaged flow field in several axial positions (X/d = −2.0, 1.0, and 5.0) is obtained through a seven-hole probe. The downstream film-cooling effectiveness on the flat plate is measured by pressure sensitive paint (PSP). The inclination angle (θ) of all the holes is 35 deg, and the compound angle (β) is ±45 deg. Effects of the spanwise distance (p = 0, 0.5d, 1.0d, 1.5d, and 2.0d) between the two interacting jets of DJFC holes are studied, while the streamwise distance (s) is kept as 3d. The blowing ratio (M) varies as 0.5, 1.0, 1.5, and 2.0. The density ratio (DR) is maintained at 1.0. Results show that the interaction between the two jets of DJFC holes has different effects at different spanwise distances. For a small spanwise distance (p/d = 0), the interaction between the jets presents a pressing effect. The downstream jet is pressed down and kept attached to the surface by the upstream one. The effectiveness is not sensitive to blowing ratios. For mid-spanwise distances (p/d = 0.5 and 1.0), the antikidney vortex pair dominates the interaction and pushes both of the jets down, thus leading to better coolant coverage and higher effectiveness. As the spanwise distance becomes larger (p/d ≥ 1.5), the pressing effect almost disappears, and the antikidney vortex pair effect is weaker. The jets separate from each other and the coolant coverage decreases. At a higher blowing ratio, the interaction between the jets of DJFC holes happens later.

References

References
1.
Han
,
J. C.
,
Dutta
,
S.
, and
Ekkad
,
S.
,
2012
, “
Gas Turbine Heat Transfer and Cooling Technology
,”
CRC Press
,
New York
.
2.
Bogard
,
D. G.
, and
Thole
,
K. A.
,
2006
, “
Gas Turbine Film Cooling
,”
AIAA J. Propul. Power
,
22
(
2
), pp.
249
270
.
3.
Haven
,
B.
,
Yamagata
,
D.
,
Kurosaka
,
M.
,
Yamawaki
,
S.
, and
Maya
,
T.
,
1997
, “
Anti-Kidney Pair of Vortices in Shaped Holes and Their Influence on Film Cooling Effectiveness
,”
ASME
Paper No. 97-GT-045.
4.
Sinha
,
A. K.
,
Bogard
,
D. G.
, and
Crawford
,
M. E.
,
1991
, “
Film-Cooling Effectiveness Downstream of a Single Row of Holes With Variable Density Ratio
,”
ASME J. Turbomach.
,
113
(
3
), pp.
442
449
.
5.
Walters
,
D. K.
, and
Leylek
,
J. H.
,
2000
, “
A Detailed Analysis of Film-Cooling Physics—Part I: Streamwise Injection With Cylindrical Holes
,”
ASME J. Turbomach.
,
122
(
1
), pp.
102
112
.
6.
Bernsdorf
,
S.
,
Rose
,
M. G.
, and
Abhari
,
R. S.
,
2006
, “
Modeling of Film Cooling—Part I: Experimental Study of Flow Structure
,”
ASME J. Turbomach.
,
128
(
1
), pp.
141
149
.
7.
Brittingham
,
R. A.
, and
Leylek
,
J. H.
,
2000
, “
A Detailed Analysis of Film Cooling Physics—Part IV: Compound-Angle Injection With Shaped Holes
,”
ASME J. Turbomach.
,
122
(
1
), pp.
133
145
.
8.
Hyams
,
D. G.
, and
Leylek
,
J. H.
,
2000
, “
A Detailed Analysis of Film Cooling Physics—Part III: Streamwise Injection With Shaped Holes
,”
ASME J. Turbomach.
,
122
(
1
), pp.
122
132
.
9.
Bunker
,
R. S.
,
2002
, “
Film Cooling Effectiveness Due to Discrete Holes Within a Transverse Surface Slot
,”
ASME
Paper No. GT2002-30178.
10.
Bunker
,
R. S.
,
2005
, “
A Review of Shaped Hole Turbine Film-Cooling Technology
,”
ASME J. Heat Transfer
,
127
(
4
), pp.
441
453
.
11.
Bunker
,
R. S.
,
2010
, “
Film Cooling: Breaking the Limits of Diffusion Shaped Holes
,”
Heat Transfer Res.
,
41
(
6
), pp.
627
650
.
12.
Bunker
,
R. S.
,
2011
, “
A Study of Mesh-Fed Slot Film Cooling
,”
ASME J. Turbomach.
,
133
(
1
), p.
011022
.
13.
Ekkad
,
S.
, and
Han
,
J. C.
,
2013
, “
A Review of Hole Geometry and Coolant Density Effect on Film Cooling
,”
ASME
Paper No. HT2013-17250.
14.
Kusterer
,
K.
,
Bohn
,
D.
,
Sugimoto
,
T.
, and
Tanaka
,
R.
,
2007
, “
Double-Jet Ejection of Cooling Air for Improved Film Cooling
,”
ASME J. Turbomach.
,
129
(
4
), pp.
809
815
.
15.
Kusterer
,
K.
,
Elyas
,
A.
,
Bohn
,
D.
,
Sugimoto
,
T.
,
Tanaka
,
R.
, and
Kazari
,
M.
,
2010
, “
Film Cooling Effectiveness Comparison Between Shaped- and Double Jet Film Cooling Holes in a Row Arrangement
,”
ASME
Paper No. GT2010-22604.
16.
Wang
,
Z.
,
Liu
,
J. J.
,
An
,
B. T.
, and
Zhang
,
C.
,
2011
, “
Effects of Axial Row-Spacing for Double-Jet Film-Cooling on the Cooling Effectiveness
,”
ASME
Paper No. GT2011-46055.
17.
Wang
,
Z.
,
Liu
,
J. J.
, and
Zhang
,
C.
,
2013
, “
Impacts of Geometric Parameters of Double-Jet Film Cooling on Anti-Kidney Vortex Structure and Cooling Effectiveness
,”
ASME
Paper No. GT2013-94038.
18.
Han
,
C.
, and
Ren
,
J.
,
2012
, “
Multi-Parameter Influence on Combined-Hole Film Cooling System
,”
Int. J. Heat Mass Transfer
,
55
(
15–16
), pp.
4232
4240
.
19.
Han
,
C.
,
Chi
,
Z. R.
,
Ren
,
J.
, and
Jiang
,
H. D.
,
2013
, “
Optimal Arrangement of Combined-Hole for Improving Film Cooling Effectiveness
,”
ASME
Paper No. GT2013-94561.
20.
Han
,
J. C.
, and
Rallabandi
,
A.
,
2010
, “
Turbine Blade Film Cooling Using PSP Technique
,”
Front. Heat Mass Transfer
,
1
(
1
), pp.
1
16
.
21.
Kendall
,
A.
, and
Koochesfahani
,
M.
,
2008
, “
A Method for Estimating Wall Friction in Turbulent Wall-Bounded Flows
,”
Exp. Fluids
,
44
(
5
), pp.
773
780
.
22.
Wright
,
L. M.
,
McClain
,
S. T.
, and
Clemenson
,
M. D.
,
2011
, “
Effect of Freestream Turbulence Intensity on Film Cooling Jet Structure and Surface Effectiveness Using PIV and PSP
,”
ASME J. Turbomach.
,
133
(
4
), p.
041023
.
23.
Wright
,
L. M.
,
McClain
,
S. T.
,
Brown
,
C. P.
, and
Harmon
,
W. V.
,
2013
, “
Assessment of a Double Hole Film Cooling Geometry Using S-PIV and PSP
,”
ASME
Paper No. GT2013-94614.
24.
Wright
,
L. M.
,
McClain
,
S. T.
, and
Clemenson
,
M. D.
,
2011
, “
Effect of Density Ratio on Flat Plate Film Cooling With Shaped Holes Using PSP
,”
ASME J. Turbomach.
,
133
(
4
), p.
041011
.
25.
Kline
,
S. J.
, and
McClintock
,
F.
,
1953
, “
Describing Uncertainties in Single-Sample Experiments
,”
Mech. Eng.
,
75
(
1
), pp.
3
8
.
You do not currently have access to this content.