Determination of a scalable Nusselt number (based on “adiabatic heat transfer coefficient”) has been the primary objective of the most existing heat transfer experimental studies. Based on the assumption that the wall thermal boundary conditions do not affect the flow field, the thermal measurements were mostly carried out at near adiabatic condition without matching the engine realistic wall-to-gas temperature ratio (TR). Recent numerical studies raised a question on the validity of this conventional practice in some applications, especially for turbine blade. Due to the relatively low thermal inertia of the over-tip-leakage (OTL) flow within the thin clearance, the fluids' transport properties vary greatly with different wall thermal boundary conditions and the two-way coupling between OTL aerodynamics and heat transfer cannot be neglected. The issue could become more severe when the gas turbine manufacturers are making effort to achieve much tighter clearance. However, there has been no experimental evidence to back up these numerical findings. In this study, transient thermal measurements were conducted in a high-temperature linear cascade rig for a range of tip clearance ratio (G/S) (0.3%, 0.4%, 0.6%, and 1%). Surface temperature history was captured by infrared thermography at a range of wall-to-gas TRs. Heat transfer coefficient (HTC) distributions were obtained based on a conventional data processing technique. The profound influence of tip surface thermal boundary condition on heat transfer and OTL flow was revealed by the first-of-its-kind experimental data obtained in the present experimental study.

References

References
1.
Eckert
,
E. R. G.
,
1955
, “
Engineering Relations for Friction and Heat Transfer to Surfaces in High Velocity Flow
,”
J. Aeronaut. Sci.
,
22
(8), pp.
585
587
.
2.
Anderson
,
A. M.
, and
Moffat
,
R. J.
,
1992
, “
The Adiabatic Heat Transfer Coefficient and the Superposition Kernel Function—Part II: Modeling Flatpack Data as a Function of Channel Turbulence
,”
ASME J. Electron. Packag.
,
114
(
1
), pp.
22
28
.
3.
Jones
,
T. V.
,
1991
, “
Definition of Heat Transfer Coefficient in the Turbine Situation
,”
IMechE Turbomachinery Conference, Paper No. C423/046
.
4.
Ekkad
,
S. V.
,
Ou
,
S.
, and
Rivir
,
R.
,
2004
, “
A Transient Infrared Thermography Method for Simultaneous Film Cooling Effectiveness and Heat Transfer Coefficient Measurements From a Single Test
,”
ASME
Paper No. GT2004-54236
.
5.
Newton
,
P. J.
,
Lock
,
G. D.
,
Krishnababu
,
S. K.
,
Hodson
,
H. P.
,
Dawes
,
W. N.
,
Hannis
,
J.
, and
Whitney
,
C.
,
2006
, “
Heat Transfer and Aerodynamics of Turbine Blade Tips in a Linear Cascade
,”
ASME J. Turbomach.
,
128
(
2
), pp.
300
309
.
6.
Xue
,
S.
,
Roy
,
A.
,
Ng
,
W. F.
, and
Ekkad
,
S. V.
,
2015
, “
A Novel Transient Technique to Determine Recovery Temperature, Heat Transfer Coefficient, and Film Cooling Effectiveness Simultaneously in a Transonic Turbine Cascade
,”
ASME J. Therm. Sci. Eng. Appl.
,
7
(
1
), p.
011016
.
7.
Thorpe
,
S.
,
Yoshino
,
S.
,
Ainsworth
,
R.
, and
Harvey
,
N.
,
2004
, “
An Investigation of the Heat Transfer and Static Pressure on the Over-Tip Casing Wall of an Axial Turbine Operating at Engine Representative Flow Conditions (I): Time- Mean Results
,”
Int. J. Heat Fluid Flow
,
25
(
6
), pp.
933
944
.
8.
Polanka
,
M. D.
,
Anthony
,
R. J.
,
Bogard
,
D. G.
, and
Reeder
,
M. F.
,
2008
, “
Determination of Cooling Parameters for a High Speed, True Scale, Metallic Turbine Vane Ring
,”
ASME
Paper No. GT2008-50281.
9.
Lavagnoli
,
S.
,
Paniagua
,
G.
,
De Maesschalck
,
C.
, and
Yasa
,
T.
,
2013
, “
Analysis of the Unsteady Overtip Casing Heat Transfer in a High Speed Turbine
,”
ASME J. Turbomach.
,
135
(
3
), p.
031027
.
10.
Shyam
,
V.
,
Ameri
,
A.
, and
Chen
,
J.-P.
,
2012
, “
Analysis of Unsteady Tip and Endwall Heat Transfer in a Highly Loaded Transonic Turbine Stage
,”
ASME J. Turbomach.
,
134
(
4
), p.
041022
.
11.
Atkins
,
N. R.
,
Thorpe
,
S. J.
, and
Ainsworth
,
R. W.
,
2012
, “
Unsteady Effects on Transonic Turbine Blade-Tip Heat Transfer
,”
ASME J. Turbomach.
,
134
(
6
), p.
061002
.
12.
Perelman
,
T.
,
1961
, “
On Conjugated Problems of Heat Transfer
,”
Int. J. Heat Mass Transfer
,
3
(
4
), pp.
293
303
.
13.
Zinnes
,
A. E.
,
1970
, “
The Coupling of Conduction With Laminar Natural Convection From a Vertical Flat Plate With Arbitrary Surface Heating
,”
ASME J. Heat Transfer
,
92
(
3
), pp.
528
535
.
14.
Luikov
,
A.
,
Aleksashenko
,
V.
, and
Aleksashenko
,
A.
,
1971
, “
Analytical Methods of Solution of Conjugated Problems in Convective Heat Transfer
,”
Int. J. Heat Mass Transfer
,
14
(
8
), pp.
1047
1056
.
15.
Luikov
,
A.
,
1974
, “
Conjugate Convective Heat Transfer Problems
,”
Int. J. Heat Mass Transfer
,
17
(
2
), pp.
257
265
.
16.
Bohn
,
D.
,
Ren
,
J.
, and
Kusterer
,
K.
,
2003
, “
Conjugate Heat Transfer Analysis for Film Cooling Configurations With Different Hole Geometries
,”
ASME
Paper No. GT2003-38369.
17.
Shih
,
T. I.-P.
,
Chi
,
X.
,
Bryden
,
K. M.
,
Alsup
,
C.
, and
Dennis
,
R. A.
,
2009
, “
Effects of Biot Number on Temperature and Heat-Flux Distributions in a TBC-Coated Flat Plate Cooled by Rib-Enhanced Internal Cooling
,”
ASME
Paper No. GT2009-59726.
18.
Ramachandran
,
S. G.
, and
Shih
,
T. I.-P.
,
2015
, “
Biot-Number Analogy for Design of Experiments in Turbine Cooling
,”
ASME J. Turbomach.
,
137
(
6
), p.
061002
.
19.
Harrison
,
K. L.
, and
Bogard
,
D. G.
,
2008
, “
Evaluation of the Use of the Adiabatic Wall Temperature to Predict Heat Fluxes for Film Cooled Turbine Airfoils
,” 12th International Symposium on Transport Phenomena and Dynamics of Rotating Machinery, Honolulu, HI, Feb. 17–22, Paper No. ISROMAC12-2008-20187.
20.
Harrison
,
K. L.
, and
Bogard
,
D. G.
,
2008
, “
Use of the Adiabatic Wall Temperature in Film Cooling to Predict Wall Heat Flux and Temperature
,”
ASME
Paper No. GT2008-51424.
21.
Silieti
,
M.
,
Alain
,
J. K.
, and
Eduardo
,
D.
,
2009
, “
Film Cooling Effectiveness Comparison of Adiabatic and Conjugate Heat Transfer CFD Models
,”
Int. J. Therm. Sci.
,
48
(
12
), pp.
2237
2248
.
22.
Heidmann
,
J. D.
,
Kassab
,
A. J.
,
Divo
,
E. A.
,
Rodriguez
,
F.
, and
Steinthorsson
,
E.
,
2003
, “
Conjugate Heat Transfer Effects on a Realistic Film-Cooled Turbine Vane
,”
ASME
Paper No. GT2003-38553.
23.
Dees
,
J. E.
,
Bogard
,
D. G.
,
Ledezma
,
G. A.
, and
Laskowski
,
G. M.
,
2011
, “
The Effects of Conjugate Heat Transfer on the Thermal Field above a Film Cooled Wall
,”
ASME
Paper No. GT2011-46617.
24.
Dees
,
J. E.
,
Ledezma
,
G. A.
,
Bogard
,
D. G.
,
Laskowski
,
G. M.
, and
Tolpadi
,
A. K.
,
2010
, “
Momentum and Thermal Boundary Layer Development on an Internally Cooled Turbine Vane
,”
ASME
Paper No. GT2010-23008.
25.
Starke
,
C.
,
Janke
,
E.
,
Hofer
,
T.
, and
Lengani
,
D.
,
2008
, “
Comparison of a Conventional Thermal Analysis of a Turbine Cascade to a Full Conjugate Heat Transfer Computation
,”
ASME
Paper No. GT2008-51151
.
26.
Verdicchio
,
J. A.
,
Chew
,
J. W.
, and
Hills
,
N. J.
,
2001
, “
Coupled Fluid/Solid Heat Transfer Computation for Turbine Discs
,”
ASME
Paper No. 2001-GT-0205.
27.
Montenay
,
A.
,
Pate
,
L.
, and
Duboue
,
J.
,
2000
, “
Conjugate Heat Transfer Analysis of an Engine Internal Cavity
,”
ASME
Paper No. 2000-GT-282.
28.
Okita
,
Y.
, and
Yamawaki
,
S.
,
2002
, “
Conjugate Heat Transfer Analysis of Turbine Rotor-Stator System
,”
ASME
Paper No. GT2002-30615.
29.
He
,
L.
, and
Oldfield
,
M. L. G.
,
2011
, “
Unsteady Conjugate Heat Transfer Modeling
,”
ASME J. Turbomach.
,
133
(
3
), p.
031022
.
30.
Fitt
,
A.
,
Forth
,
C.
,
Robertson
,
B.
, and
Jones
,
T.
,
1986
, “
Temperature Ratio Effects in Compressible Turbulent Boundary Layers
,”
Int. J. Heat Mass Transfer
,
29
(
1
), pp.
159
164
.
31.
Kays
,
W.
,
Crawford
,
M.
, and
Weigand
,
B.
,
2005
,
Convective Heat and Mass Transfer-Four Edition
,
Mc Graw-Hill Publishing Co
.,
New York
.
32.
Maffulli
,
R.
, and
He
,
L.
,
2014
, “
Wall Temperature Effects on Heat Transfer Coefficient for High-Pressure Turbines
,”
J. Propul. Power
,
30
(
4
), pp.
1080
1090
.
33.
Maffulli
,
R.
, and
He
,
L.
,
2017
, “
Impact of Wall Temperature on Heat Transfer Coefficient and Aerodynamics for Three-Dimensional Turbine Blade Passage
,”
ASME J. Therm. Sci. Eng. Appl.
,
9
(
4
), p.
041002
.
34.
Zhang
,
Q.
, and
He
,
L.
,
2014
, “
Impact of Wall Temperature on Turbine Blade Tip Aerothermal Performance
,”
ASME J. Eng. Gas Turbines Power
,
136
(
5
), p.
052602
.
35.
Lavagnoli
,
S.
,
Maesschalck
,
C. D.
, and
Paniagua
,
G.
,
2016
, “
Analysis of the Heat Transfer Driving Parameters in Tight Rotor Blade Tip Clearances
,”
ASME J. Heat Transfer
,
138
(
1
), p.
011705
.
36.
Ma
,
H.
,
Zhang
,
Q.
,
He
,
L.
,
Wang
,
Z.
, and
Wang
,
L.
,
2017
, “
Cooling Injection Effect on a Transonic Squealer Tip—Part I: Experimental Heat Transfer Results and CFD Validation
,”
ASME J. Eng. Gas Turbines Power
,
139
(
5
), p.
052506
.
37.
Oldfield
,
M. L. G.
,
2008
, “
Impulse Response Processing of Transient Heat Transfer Gauge Signals
,”
ASME J. Turbomach.
,
130
(
2
), p.
021023
.
38.
Zhang
,
Q.
,
He
,
L.
,
Wheeler
,
A.
,
Ligrani
,
P.
, and
Cheong
,
B.
,
2011
, “
Overtip Shock Wave Structure and Its Impact on Turbine Blade Tip Heat Transfer
,”
ASME J. Turbomach.
,
133
(
4
), p.
041001
.
39.
Zhang
,
Q.
,
O'Dowd
,
D. O.
,
He
,
L.
,
Oldfield
,
M.
, and
Ligrani
,
P.
,
2011
, “
Transonic Turbine Blade Tip Aerothermal Performance With Different Tip Gaps—Part I: Tip Heat Transfer
,”
ASME J. Turbomach.
,
133
(
4
), p.
041027
.
40.
O'Dowd
,
D. O.
,
Zhang
,
Q.
,
He
,
L.
,
Ligrani
,
P. M.
, and
Friedrichs
,
S.
,
2011
, “
Comparison of Heat Transfer Measurement Techniques on a Transonic Turbine Blade Tip
,”
ASME J. Turbomach.
,
133
(
2
), p.
021028
.
41.
Devore
,
J.
,
2011
,
Probability and Statistics for Engineering and the Sciences
,
Cengage Learning
,
Boston, MA
.
You do not currently have access to this content.