This paper presents a detailed experimental and numerical study on the effects of upstream step geometry on the endwall secondary flow and heat transfer in a transonic linear turbine vane passage with axisymmetric converging endwalls. The upstream step geometry represents the misalignment between the combustor exit and the nozzle guide vane endwall. The experimental measurements were performed in a blowdown wind tunnel with an exit Mach number of 0.85 and an exit Re of 1.5×106. A high freestream turbulence level of 16% was set at the inlet, which represents the typical turbulence conditions in a gas turbine engine. Two upstream step geometries were tested for the same vane profile: a baseline configuration with a gap located 0.88Cx (43.8 mm) upstream of the vane leading edge (upstream step height = 0 mm) and a misaligned configuration with a backward-facing step located just before the gap at 0.88Cx (43.8 mm) upstream of the vane leading edge (step height = 4.45% span). The endwall temperature history was measured using transient infrared thermography, from which the endwall thermal load distribution, namely, Nusselt number, was derived. This paper also presents a comparison with computational fluid dynamics (CFD) predictions performed by solving the steady-state Reynolds-averaged Navier–Stokes with Reynolds stress model using the commercial CFD solver ansysfluent v.15. The CFD simulations were conducted at a range of different upstream step geometries: three forward-facing (upstream step geometries with step heights from −5.25% to 0% span), and five backward-facing, upstream step geometries (step heights from 0% to 6.56% span). These CFD results were used to highlight the link between heat transfer patterns and the secondary flow structures and explain the effects of upstream step geometry. Experimental and numerical results indicate that the backward-facing upstream step geometry will significantly enlarge the high thermal load region and result in an obvious increase (up to 140%) in the heat transfer coefficient (HTC) level, especially for arched regions around the vane leading edge. However, the forward-facing upstream geometry will modestly shrink the high thermal load region and reduce the HTC (by ∼10% to 40% decrease), especially for the suction side regions near the vane leading edge. The aerodynamic loss appears to have a slight increase (0.3–1.3%) because of the forward-facing upstream step geometry but is slightly reduced (by 0.1–0.3%) by the presence of the backward upstream step geometry.

References

References
1.
Lakshminarayana
,
B.
,
1996
, “
Turbine Cooling and Heat Transfer
,”
Fluid Dynamics and Heat Transfer of Turbomachinery
,
Wiley
,
New York
, pp.
597
721
.
2.
Han
,
J. C.
,
2013
, “
Fundamental Gas Turbine Heat Transfer
,”
ASME J. Therm. Sci. Eng.
,
5
(
2
), p.
021007
.
3.
Laveau
,
B.
,
Abhari
,
R. S.
,
Crowford
,
M. E.
, and
Lutum
,
E. L.
,
2015
, “
High Resolution Heat Transfer Measurements on the Stator Endwall of an Axial Turbine
,”
ASME J. Turbomach.
,
137
(
4
), p.
041005
.
4.
Herzig
,
H. Z.
,
Hansen
,
A. G.
, and
Costello
,
G. R.
,
1954
, “
A Visualization Study of Secondary Flows in Cascades
,” National Advisory Committee for Aeronautics, Cleveland, OH, NACA Annual Report No. 40.
5.
Langston
,
L. S.
,
1980
, “
Crossflows in a Turbine Cascade Passage
,”
ASME J. Eng. Power
,
102
(
4
), pp.
866
874
.
6.
Goldstein
,
R. J.
, and
Karni
,
J.
,
1984
, “
The Effect of a Wall Boundary Layer on Local Mass Transfer From a Cylinder in Crossflow
,”
ASME J. Heat Transfer
,
106
(
2
), pp.
260
267
.
7.
Sharma
,
O. P.
, and
Butler
,
T. L.
,
1987
, “
Predictions of Endwall Losses and Secondary Flows in Axial Flow Turbine Cascades
,”
ASME J. Turbomach.
,
109
(
2
), pp.
229
236
.
8.
Langston
,
L. S.
,
Nice
,
M. L.
, and
Hooper
,
R. M.
,
1977
, “
Three-Dimensional Flow Within a Turbine Cascade Passage
,”
ASME J. Eng. Power
,
99
(
1
), pp.
21
28
.
9.
Gaugler
,
R. E.
, and
Russell
,
L. M.
,
1984
, “
Comparison of Visualized Turbine Endwall Secondary Flows and Measured Heat Transfer Patterns
,”
ASME J. Eng. Gas Turbines Power
,
106
(
1
), pp.
168
172
.
10.
Kang
,
M. B.
,
Kohli
,
A.
, and
Thole
,
K. A.
,
1999
, “
Heat Transfer and Flowfield Measurements in the Leading Edge Region of a Stator Vane Endwall
,”
ASME J. Turbomach.
,
121
(
3
), pp.
558
568
.
11.
Ames
,
F. E.
,
Barbot
,
P. A.
, and
Wang
,
C.
,
2003
, “
Effects of Aeroderivative Combustor Turbulence on Endwall Heat Transfer Distributions Acquired in a Linear Vane Cascade
,”
ASME J. Turbomach.
,
125
(
2
), pp.
210
220
.
12.
Blair
,
M. F.
,
1974
, “
An Experimental Study of Heat Transfer and Film Cooling on Large-Scale Turbine Endwalls
,”
ASME J. Heat Transfer
,
96
(
4
), pp.
524
529
.
13.
Graziani
,
R. A.
,
Blair
,
M. F.
,
Taylor
,
J. R.
, and
Mayle
,
R. E.
,
1980
, “
An Experimental Study of Endwall and Airfoil Surface Heat Transfer in a Large Scale Turbine Blade Cascade
,”
ASME J. Eng. Power
,
102
(
2
), pp.
257
267
.
14.
Lethander
,
A. T.
,
Thole
,
K. A.
,
Zess
,
G.
, and
Wagner
,
J.
,
2004
, “
Vane–Endwall Junction Optimization to Reduce Turbine Vane Passage Adiabatic Wall Temperatures
,”
AIAA J. Propul. Power
,
20
(
6
), pp.
1096
1104
.
15.
Thrift
,
A.
,
Thole
,
K. A.
, and
Hada
,
S.
,
2011
, “
Effects of an Axisymmetric Contoured Endwall on a Nozzle Guide Vane: Convective Heat Transfer Measurements
,”
ASME J. Turbomach.
,
133
(
4
), p.
041008
.
16.
Piggush
,
J. D.
, and
Simon
,
T. W.
,
2007
, “
Heat Transfer Measurements in a First-Stage Nozzle Cascade Having Endwall Contouring: Misalignment and Leakage Studies
,”
ASME J. Turbomach.
,
129
(
4
), pp.
782
790
.
17.
Laveau
,
B.
,
Abhari
,
R. S.
,
Crawford
,
M. E.
, and
Lutum
,
E.
,
2013
, “
High Resolution Heat Transfer Measurements on Flat and Contoured Endwalls in a Linear Cascade
,”
ASME J. Turbomach.
,
135
(
4
), p.
041020
.
18.
Lynch
,
S. P.
,
Sundaram
,
N.
,
Thole
,
K. A.
,
Kohli
,
A.
, and
Lehane
,
C.
,
2011
, “
Heat Transfer for a Turbine Blade With Nonaxisymmetric Endwall Contouring
,”
ASME J. Turbomach.
,
133
(
1
), p.
011019
.
19.
Abo
,
E. I.
,
Ella
,
H. M.
,
Sjolander
,
S. A.
, and
Praisner
,
T. J.
,
2012
, “
Effects of an Upstream Cavity on the Secondary Flow in a Transonic Turbine Cascade
,”
ASME J. Turbomach.
,
134
(
5
), p.
051009
.
20.
Lynch
,
S. P.
, and
Thole
,
K. A.
,
2011
, “
The Effect of the Combustor-Turbine Slot and Midpassage Gap on Vane Endwall Heat Transfer
,”
ASME J. Turbomach.
,
133
(
4
), p.
41002
.
21.
Arisi
,
A.
,
Mayo
,
D.
,
Li
,
Z.
,
Ng
,
W. F.
,
Moon
,
H. K.
, and
Zhang
,
L.
,
2016
, “
An Experimental and Numerical Investigation of the Effect of Combustor-Nozzle Platform Misalignment on Endwall Heat Transfer at Transonic High Turbulence Conditions
,”
ASME
Paper No. GT2016-57763
.
22.
Mayo
,
D.
,
Arisi
,
A.
,
Li
,
Z.
,
Li
,
J.
,
Ng
,
W. F.
,
Moon
,
H. K.
, and
Zhang
,
L.
,
2017
, “
Effect of Combustor-Turbine Platform Misalignment on the Aerodynamics and Heat Transfer of an Axisymmetric Converging Vane Endwall at Transonic Conditions
,”
ASME
Paper No. GT2017-65091
.
23.
Nasir
,
S.
,
Bolchoz
,
T.
,
Ng
,
W. F.
,
Zhang
,
L. J.
,
Koo Moon
,
H.
, and
Anthony
,
R. J.
,
2012
, “
Showerhead Film Cooling Performance of a Turbine Vane at High Freestream Turbulence in a Transonic Cascade
,”
ASME J. Turbomach.
,
134
(
5
), p.
051021
.
24.
Arisi
,
A.
,
Xue
,
S.
,
Ng
,
W.
,
Moon
,
H.
, and
Zhang
,
L.
,
2015
, “
Numerical Investigation of Aerothermal Characteristics of the Blade Tip and Near-Tip Regions of a Transonic Turbine Blade
,”
ASME J. Turbomach.
,
137
(
9
), p.
091002
.
25.
Holmberg
,
D. G.
, and
Diller
,
T. E.
,
2005
, “
Simultaneous Heat Flux and Velocity Measurements in a Transonic Turbine Cascade
,”
ASME J. Turbomach.
,
127
(
3
), pp.
502
506
.
26.
Nix
,
A. C.
,
Diller
,
T. E.
, and
Ng
,
W. F.
,
2007
, “
Experimental Measurements and Modeling of the Effects of Large-Scale Freestream Turbulence on Heat Transfer
,”
ASME J. Turbomach.
,
129
(
3
), pp.
542
550
.
27.
Carullo
,
J. S.
,
Nasir
,
S.
,
Cress
,
R. D.
,
Ng
,
W. F.
,
Thole
,
K. A.
,
Zhang
,
L. J.
, and
Moon
,
H. K.
,
2011
, “
The Effects of Freestream Turbulence, Turbulence Length Scale, and Exit Reynolds Number on Turbine Blade Heat Transfer in a Transonic Cascade
,”
ASME J. Turbomach.
,
133
(
1
), p.
011030
.
28.
Cook
,
W. J.
, and
Felderman
,
E. J.
,
1966
, “
Reduction of Data from Thin-Film Heat-Transfer gages: A Concise Numerical Technique
,”
AIAA J.
,
4
(
3
), pp.
561
562
.
29.
Xue
,
S.
,
Roy
,
A.
,
Ng
,
W. F.
, and
Ekkad
,
S. V.
,
2015
, “
A Novel Transient Technique to Determine Recovery Temperature, Heat Transfer Coefficient, and Film Cooling Effectiveness Simultaneously in a Transonic Turbine Cascade
,”
ASME J. Therm. Sci. Eng. Appl.
,
7
(
1
), p.
011016
.
30.
Moffat
,
R. J.
,
1982
, “
Contributions to the Theory of Single-Sample Uncertainty Analysis
,”
ASME J. Fluids Eng.
,
104
(
2
), pp.
250
258
.
31.
Brown
,
K. K.
,
Coleman
,
H. W.
, and
Steele
,
W. G.
,
1998
, “
A Methodology for Determining Experimental Uncertainties in Regressions
,”
ASME J. Fluids Eng.
,
120
(
3
), pp.
445
456
.
32.
Rose
,
M.
,
1999
, “
What Should We Measure? An Aero-Engine Turbine Aero-Dynamic Perspective
,” Rolls-Royce plc, London, Technical Report No. RR-PNR-92620.
You do not currently have access to this content.