The dimensionless model presented in part I of the corresponding paper to describe the flutter onset of two-fin rotating seals is exploited to extract valuable engineering trends with the design parameters. The analytical expression for the nondimensional work-per-cycle depends on three dimensionless parameters of which two of them are new. These parameters are simple but interrelate the effect of the pressure ratio, the height, and length of the interfin geometry, the seal clearance, the nodal diameter (ND), the fluid swirl velocity, the vibration frequency, and the torsion center location in a compact and intricate manner. It is shown that nonrelated physical parameters can actually have an equivalent impact on seal stability. It is concluded that the pressure ratio can be stabilizing or destabilizing depending on the case, whereas the swirl of the flow is always destabilizing. Finally, a simple method to extend the model to multiple interfin cavities, neglecting the unsteady interaction among them, is described.

References

References
1.
Mare
,
L. D.
,
Imregun
,
M.
,
Green
,
J.
, and
Sayma
,
A. I.
,
2010
, “
A Numerical Study on Labyrinth Seal Flutter
,”
ASME J. Tribol.
,
132
(
2
), p.
022201
.
2.
Lewis
,
D.
,
Platt
,
C.
, and
Smith
,
E.
,
1979
, “
Aeroelastic Instability in F100 Labyrinth Air Seals
,”
AIAA J. Aircr.
,
16
(
7
), pp.
484
490
.
3.
Waschka
,
W.
,
Witting
,
S.
, and
Kim
,
S.
,
1992
, “
Influence of High Rotational Speeds on the Heat Transfer and Discharge Coefficients in Labyrinth Seals
,”
ASME J. Turbomach.
,
114
(
2
), pp.
462
468
.
4.
Willenborg
,
K.
,
Kim
,
S.
, and
Witting
,
S.
,
2001
, “
Effect of Reynolds Number and Pressure Ratio on Leakage Flow and Heat Transfer in a Stepped Labyrinth Seal
,”
ASME J. Turbomach.
,
123
(
4
), pp.
815
822
.
5.
Alford
,
J.
,
1964
, “
Protection of Labyrinth Seals From Flexural Vibration
,”
ASME J. Eng. Gas Turbines Power
,
86
(
2
), pp.
141
147
.
6.
Ehrich
,
F.
,
1968
, “
Aeroelastic Instability in Labyrinth Seals
,”
ASME J. Eng. Gas Turbines Power
,
90
(
4
), pp.
369
374
.
7.
Alford
,
J. S.
,
1975
, “
Nature, Causes and Prevention of Labyrinth Air Seal Failures
,”
AIAA J. Aircr.
,
12
(
4
), pp.
313
318
.
8.
Abbot
,
D. R.
,
1981
, “
Advances in Labyrinth Seal Aeroelastic Instability Prediction and Prevention
,”
ASME J. Eng. Gas Turbines Power
,
103
(
2
), pp.
308
312
.
9.
Corral
,
R.
, and
Vega
,
A.
,
2016
, “
The Low Reduced Frequency Limit of Vibrating Airfoils—Part I: Theoretical Analysis
,”
ASME J. Turbomach.
,
138
(
2
), p.
021004
.
10.
Corral
,
R.
, and
Vega
,
A.
,
2016
, “
Physics of Vibrating Turbine Airfoils at Low Reduced Frequency
,”
AIAA J. Propul. Power
,
32
(
2
), pp.
325
336
.
11.
Barbarossa
,
F.
,
Parry
,
A. B.
,
Green
,
J. S.
, and
di Mare
,
L.
,
2016
, “
An Aerodynamic Parameter for Low-Pressure Turbine Flutter
,”
ASME J. Turbomach.
,
138
(
5
), p.
051001
.
12.
Corral
,
R.
, and
Vega
,
A.
,
2017
, “
Quantification of the Influence of Unsteady Aerodynamic Loading on the Damping Characteristics of Oscillating Airfoils at Low Reduced Frequency—Part I: Theoretical Support
,”
ASME J. Turbomach.
,
139
(
3
), p.
0310009
.
13.
Phibel
,
R.
, and
Mare
,
L. D.
,
2011
, “
Comparison Between a CFD Code and a Three-Control-Volume Model for Labyrinth Seal Flutter Predictions
,”
ASME
Paper No. GT2011-46281.
14.
Vega
,
A.
, and
Corral
,
R.
,
2016
, “
The Low Reduced Frequency Limit of Vibrating Airfoils—Part II: Numerical Experiments
,”
ASME J. Turbomach.
,
128
(
2
), p.
021005
.
15.
Vega
,
A.
, and
Corral
,
R.
,
2017
, “
Quantification of the Influence of Unsteady Aerodynamic Loading on the Damping Characteristics of Oscillating Airfoils at Low Reduced Frequency. Part ii: Numerical Verification
,”
ASME J. Turbomach.
,
139
(
3
), p.
031010
.
16.
Corral
,
R.
, and
Vega
,
A.
,
2018
, “
Conceptual Flutter Analysis of Labyrinth Seals Using Analytical Models—Part I: Theoretical Support
,”
ASME J. Turbomach.
(accepted).
17.
Phibel
,
R.
,
Mare
,
L. D.
, and
Imregun
,
J. G. M.
,
2009
, “
Labyrinth Seal Aeroelastic Stability, a Numerical Investigation
,”
12th International Symposium on Unsteady Aerodynamics, Aeroacoustics & Aeroelasticity of Turbomachines
, London, Sept. 1–4, Paper No. I12-S2-3.
This content is only available via PDF.
You do not currently have access to this content.