Due to the low level of profile losses reached in low-pressure turbines (LPT) for turbofan applications, a renewed interest is devoted to other sources of loss, e.g., secondary losses. At the same time, the adoption of high-lift profiles has reinforced the importance of these losses. A great attention, therefore, is dedicated to reliable prediction methods and to the understanding of the mechanisms that drive the secondary flows. In this context, a numerical and experimental campaign on a state-of-the-art LPT cascade was carried out focusing on the impact of different inlet boundary layer (BL) profiles. First of all, detailed Reynolds Averaged Navier-Stokes (RANS) analyzes were carried out in order to establish dependable guidelines for the computational setup. Such analyzes also underlined the importance of the shape of the inlet BL very close to the endwall, suggesting tight requirements for the characterization of the experimental environment. The impact of the inlet BL on the secondary flow was experimentally investigated by varying the inlet profile very close to the endwall as well as on the external part of the BL. The effects on the cascade performance were evaluated by measuring the span-wise distributions of flow angle and total pressure losses. For all the inlet conditions, comparisons between Computational Fluid Dynamics (CFD) and experimental results are discussed. Besides providing guidelines for a proper numerical and experimental setup, the present paper underlines the importance of a detailed characterization of the inlet BL for an accurate assessment of the secondary flows.
Skip Nav Destination
Article navigation
November 2018
Research-Article
Secondary Flows in Low-Pressure Turbines Cascades: Numerical and Experimental Investigation of the Impact of the Inner Part of the Boundary Layer
Matteo Giovannini,
Matteo Giovannini
Departimento di Ingegneria Industriale (DIEF),
Università degli Studi di Firenze,
Via di Santa Marta 3,
Firenze 50139, Italy
e-mail: Matteo.Giovannini@tgroup.unifi.it
Università degli Studi di Firenze,
Via di Santa Marta 3,
Firenze 50139, Italy
e-mail: Matteo.Giovannini@tgroup.unifi.it
Search for other works by this author on:
Filippo Rubechini,
Filippo Rubechini
Departimento di Ingegneria Industriale (DIEF),
Università degli Studi di Firenze,
Via di Santa Marta 3,
Firenze 50139, Italy
e-mail: Filippo.Rubechini@tgroup.unifi.it
Università degli Studi di Firenze,
Via di Santa Marta 3,
Firenze 50139, Italy
e-mail: Filippo.Rubechini@tgroup.unifi.it
Search for other works by this author on:
Michele Marconcini,
Michele Marconcini
Departimento di Ingegneria Industriale (DIEF),
Università degli Studi di Firenze,
Via di Santa Marta 3,
Firenze 50139, Italy
e-mail: Michele.Marconcini@tgroup.unifi.it
Università degli Studi di Firenze,
Via di Santa Marta 3,
Firenze 50139, Italy
e-mail: Michele.Marconcini@tgroup.unifi.it
Search for other works by this author on:
Daniele Simoni,
Daniele Simoni
Dipartimento di Ingegneria meccanica,
energetica, gestionale e dei trasporti (DIME),
Università di Genova,
Via Montallegro, 1,
Genova 16145, Italy
e-mail: daniele.simoni@unige.it
energetica, gestionale e dei trasporti (DIME),
Università di Genova,
Via Montallegro, 1,
Genova 16145, Italy
e-mail: daniele.simoni@unige.it
Search for other works by this author on:
Vianney Yepmo,
Vianney Yepmo
Dipartimento di Ingegneria meccanica,
energetica, gestionale e dei trasporti (DIME),
Università di Genova,
Via Montallegro, 1,
Genova 16145, Italy
e-mail: vianney.yepmo.henang@edu.unige.it
energetica, gestionale e dei trasporti (DIME),
Università di Genova,
Via Montallegro, 1,
Genova 16145, Italy
e-mail: vianney.yepmo.henang@edu.unige.it
Search for other works by this author on:
Francesco Bertini
Francesco Bertini
Search for other works by this author on:
Matteo Giovannini
Departimento di Ingegneria Industriale (DIEF),
Università degli Studi di Firenze,
Via di Santa Marta 3,
Firenze 50139, Italy
e-mail: Matteo.Giovannini@tgroup.unifi.it
Università degli Studi di Firenze,
Via di Santa Marta 3,
Firenze 50139, Italy
e-mail: Matteo.Giovannini@tgroup.unifi.it
Filippo Rubechini
Departimento di Ingegneria Industriale (DIEF),
Università degli Studi di Firenze,
Via di Santa Marta 3,
Firenze 50139, Italy
e-mail: Filippo.Rubechini@tgroup.unifi.it
Università degli Studi di Firenze,
Via di Santa Marta 3,
Firenze 50139, Italy
e-mail: Filippo.Rubechini@tgroup.unifi.it
Michele Marconcini
Departimento di Ingegneria Industriale (DIEF),
Università degli Studi di Firenze,
Via di Santa Marta 3,
Firenze 50139, Italy
e-mail: Michele.Marconcini@tgroup.unifi.it
Università degli Studi di Firenze,
Via di Santa Marta 3,
Firenze 50139, Italy
e-mail: Michele.Marconcini@tgroup.unifi.it
Daniele Simoni
Dipartimento di Ingegneria meccanica,
energetica, gestionale e dei trasporti (DIME),
Università di Genova,
Via Montallegro, 1,
Genova 16145, Italy
e-mail: daniele.simoni@unige.it
energetica, gestionale e dei trasporti (DIME),
Università di Genova,
Via Montallegro, 1,
Genova 16145, Italy
e-mail: daniele.simoni@unige.it
Vianney Yepmo
Dipartimento di Ingegneria meccanica,
energetica, gestionale e dei trasporti (DIME),
Università di Genova,
Via Montallegro, 1,
Genova 16145, Italy
e-mail: vianney.yepmo.henang@edu.unige.it
energetica, gestionale e dei trasporti (DIME),
Università di Genova,
Via Montallegro, 1,
Genova 16145, Italy
e-mail: vianney.yepmo.henang@edu.unige.it
Francesco Bertini
1Corresponding author.
Contributed by the International Gas Turbine Institute (IGTI) of ASME for publication in the JOURNAL OF TURBOMACHINERY. Manuscript received August 8, 2018; final manuscript received August 29, 2018; published online October 8, 2018. Editor: Kenneth Hall.
J. Turbomach. Nov 2018, 140(11): 111002 (12 pages)
Published Online: October 8, 2018
Article history
Received:
August 8, 2018
Revised:
August 29, 2018
Citation
Giovannini, M., Rubechini, F., Marconcini, M., Simoni, D., Yepmo, V., and Bertini, F. (October 8, 2018). "Secondary Flows in Low-Pressure Turbines Cascades: Numerical and Experimental Investigation of the Impact of the Inner Part of the Boundary Layer." ASME. J. Turbomach. November 2018; 140(11): 111002. https://doi.org/10.1115/1.4041378
Download citation file:
Get Email Alerts
Evaluating Thin-Film Thermocouple Performance on Additively Manufactured Turbine Airfoils
J. Turbomach (July 2025)
Thermohydraulic Performance and Flow Structures of Diamond Pyramid Arrays
J. Turbomach (July 2025)
Related Articles
Numerical Investigation of the Influence of Real World Blade Profile Variations on the Aerodynamic Performance of Transonic Nozzle Guide Vanes
J. Turbomach (March,2012)
Predicting Separation and Transitional Flow in Turbine Blades at Low Reynolds Numbers—Part II: The Application to a Highly Separated Turbine Blade Cascade Geometry
J. Turbomach (July,2011)
A Numerical Investigation on the Influence of Lateral Boundaries in Linear Vibrating Cascades
J. Turbomach (July,2003)
Inverse Design of and Experimental Measurements in a Double-Passage Transonic Turbine Cascade Model
J. Turbomach (July,2005)
Related Proceedings Papers
Related Chapters
Boundary Layer Analysis
Centrifugal Compressors: A Strategy for Aerodynamic Design and Analysis
Introduction
Design and Analysis of Centrifugal Compressors
Aerodynamic Performance Analysis
Axial-Flow Compressors