Large eddy simulations (LES) were performed to investigate film cooling of a flat plate, where the cooling jets issued from a plenum through one row of circular holes of diameter D and length 4.7D that are inclined at 35 deg relative to the plate. The focus is on understanding the turbulent structure of the film-cooling jet and the film-cooling effectiveness. Parameters studied include blowing ratio (BR = 0.5 and 1.0) and density ratio (DR = 1.1 and 1.6). Also, two different boundary layers (BL) upstream of the film-cooling hole were investigated—one in which a laminar BL was tripped to become turbulent from near the leading edge of the flat plate, and another in which a mean turbulent BL is prescribed directly. The wall-resolved LES solutions generated were validated by comparing its time-averaged values with data from PIV and thermal measurements. Results obtained show that having an upstream BL that does not have turbulent fluctuations enhances the cooling effectiveness significantly at low velocity ratios (VR) when compared to an upstream BL that resolved the turbulent fluctuations. However, these differences diminish at higher VRs. Instantaneous flow reveals a bifurcation in the jet vorticity as it exits the hole at low VRs, one branch forming the shear-layer vortex, while the other forms the counter-rotating vortex pair (CRVP). At higher VRs, the shear layer vorticity is found to reverse direction, changing the nature of the turbulence and the heat transfer. Results obtained also show the strength and structure of the turbulence in the film-cooling jet to be strongly correlated to VR.

References

References
1.
Kelso
,
R.
,
Lim
,
T.
, and
Perry
,
A.
,
1996
, “
An Experimental Study of Round Jets in Cross-Flow
,”
J. Fluid Mech.
,
306
(
1
), pp.
111
144
.
2.
Fric
,
T. F.
, and
Roshko
,
A.
,
1994
, “
Vortical Structure in the Wake of a Transverse Jet
,”
J. Fluid Mech.
,
279
(
1
), pp.
1
47
.
3.
Mahesh
,
K.
,
2012
, “
The Interaction of Jets With Crossflow
,”
Annu. Rev. Fluid Mech.
,
45
(
1
), pp.
379
407
.
4.
Bogard
,
D. G.
, and
Thole
,
K. A.
,
2006
, “
Gas Turbine Film Cooling
,”
J. Propul. Power
,
22
(
2
), pp.
249
270
.
5.
Acharya
,
S.
,
2010
, “
Film Cooling Simulation and Control
,”
Heat Transfer Res.
,
41
(
6
), pp.
601
626
.
6.
Walters
,
D. K.
, and
Leylek
,
J. H.
,
1997
, “
A Systematic Computational Methodology Applied to a Three-Dimensional Film-Cooling Flowfield
,”
ASME J. Turbomach.
,
119
(
4
), pp.
777
785
.
7.
Ferguson
,
J. D. J.
,
Walters
,
D. K. D.
, and
Leylek
,
J. J. H.
,
1998
, “
Performance of Turbulence Models and Near-Wall Treatments in Discrete Jet Film Cooling Simulations
,”
ASME
Paper No. 98-GT-438.
8.
Hoda
,
A.
, and
Acharya
,
S.
,
2000
, “
Predictions of a Film Coolant Jet in Crossflow With Different Turbulence Models
,”
ASME J. Turbomach.
,
122
(
3
), pp.
558
569
.
9.
Tyagi
,
M.
, and
Acharya
,
S.
,
2003
, “
Large Eddy Simulation of Film Cooling Flow From an Inclined Cylindrical Jet
,”
ASME J. Turbomach.
,
125
(
4
), pp.
734
742
.
10.
Dai
,
C.
,
Jia
,
L.
,
Zhang
,
J.
,
Shu
,
Z.
, and
Mi
,
J.
,
2016
, “
On the Flow Structure of an Inclined Jet in Crossflow at Low Velocity Ratios
,”
Int. J. Heat Fluid Flow
,
58
, pp.
11
18
.
11.
Sakai
,
E.
,
Takahashi
,
T.
, and
Watanabe
,
H.
,
2014
, “
Large-Eddy Simulation of an Inclined round Jet Issuing Into a Crossflow
,”
Int. J. Heat Mass Transfer
,
69
, pp.
300
311
.
12.
Zhong
,
L.
,
Zhou
,
C.
, and
Chen
,
S.
,
2016
, “
Effects of Approaching Main Flow Boundary Layer on Flow and Cooling Performance of an Inclined Jet in Cross Flow
,”
Int. J. Heat Mass Transfer
,
103
, pp.
572
581
.
13.
Ziefle
,
J.
, and
Kleiser
,
L.
,
2008
, “
Assessment of a Film-Cooling Flow Structure by Large-Eddy Simulation
,”
J. Turbul.
,
9
(29), pp.
37
41
.
14.
Ziefle
,
J.
, and
Kleiser
,
L.
,
2013
, “
Numerical Investigation of a Film-Cooling Flow Structure: Effect of Crossflow Turbulence
,”
ASME J. Heat Transfer
,
135
(
4
), p.
041001
.
15.
Kalghatgi
,
P.
, and
Acharya
,
S.
,
2014
, “
Modal Analysis of Inclined Film Cooling Jet Flow
,”
ASME J. Turbomach.
,
136
(
8
), p.
081007
.
16.
Renze
,
P.
,
Schröder
,
W.
, and
Meinke
,
M.
,
2008
, “
Large-Eddy Simulation of Film Cooling Flows at Density Gradients
,”
Int. J. Heat Fluid Flow
,
29
(
1
), pp.
18
34
.
17.
Sakai
,
E.
, and
Takahashi
,
T.
,
2017
, “
Numerical Study on Effects of Density Ratio on Film Cooling Flow Structure and Film Cooling Effectiveness
,”
ASME
Paper No. GT2017-63168.
18.
Stratton
,
Z. T.
, and
Shih
,
T. I.-P.
,
2015
, “
Effects of Crossflow in an Internal-Cooling Channel on Film Cooling of a Flat Plate Through Compound-Angle Holes
,”
ASME
Paper No. GT2015-42771.
19.
Rodebaugh
,
G.
, and
Stratton
,
Z.
,
2015
, “
Assessment of Large Eddy Simulation Predictive Capability for Compound Angle round Film Holes
,”
ASME
Paper No. GT2015-43602.
20.
Guo
,
X.
,
Schröder
,
W.
, and
Meinke
,
M.
,
2006
, “
Large-Eddy Simulations of Film Cooling Flows
,”
Comput. Fluids
,
35
(
6
), pp.
587
606
.
21.
Muldoon
,
F.
, and
Acharya
,
S.
,
2006
, “
Analysis of k and Epsilon Budgets for Film Cooling Using Direct Numerical Simulation
,”
AIAA J.
,
44
(
12
), pp.
3010
3021
.
22.
Peet
,
Y. V.
,
2006
, “
Film Cooling From Inclined Cylindrical Holes Using Large Eddy Simulations
,” Ph.D. thesis, Stanford University, Stanford, CA.
23.
Iourokina
,
I.
, and
Lele
,
S.
,
2006
, “
Large Eddy Simulation of Film-Cooling Above the Flat Surface With a Large Plenum and Short Exit Holes
,”
AIAA
Paper No. 2006-1102.
24.
Coletti
,
F.
,
Benson
,
M. J.
,
Ling
,
J.
,
Elkins
,
C. J.
, and
Eaton
,
J. K.
,
2013
, “
Turbulent Transport in an Inclined Jet in Crossflow
,”
Int. J. Heat Fluid Flow
,
43
, pp.
149
160
.
25.
Bodart
,
J.
,
Coletti
,
F.
,
Bermejo-Moreno
,
I.
, and
Eaton
,
J.
,
2013
, “
High-Fidelity Simulation of a Turbulent Inclined Jet in a Crossflow
,”
CTR Annu. Res. Briefs
,
19
, pp.
263
275
.
26.
Foster
,
N. W.
, and
Lampard
,
D.
,
1975
, “
Effects of Density and Velocity Ratio on Discrete Hole Film Cooling
,”
AIAA J.
,
13
(
8
), pp.
1112
1114
.
27.
Goldstein
,
R. J.
,
Pedersen
,
D. R.
,
Eckert
,
E. R. G.
,
Goldstein
,
R. J.
,
Pedersen
,
D. R.
,
Eckert
,
E. R. G.
, and
Goldstein
,
R. J.
,
1977
, “
Film Cooling With Large Density Differences Between the Mainstream and the Secondary Fluid Measured by the Heat-Mass Transfer Analogy
,”
ASME J. Heat Transfer
,
99
(
4
), pp.
620
627
.
28.
Pietrzyk
,
J. R.
,
Bogard
,
D. G.
, and
Crawford
,
M. E.
,
1989
, “
Hydrodynamics Measurements of Jets in Crossflow for Gas Turbine Film-Cooling Applications
,”
ASME J. Turbomach.
,
111
(
2
), pp.
139
145
.
29.
Pietrzyk
,
J.
,
Bogard
,
D. G.
, and
Crawford
,
M. E.
,
1990
, “
Effects of Density Ratio on the Hydrodynamics of Film Cooling
,”
ASME J. Turbomach.
,
112
(
3
), pp.
437
443
.
30.
Sinha
,
A. K.
,
Bogard
,
D. G.
, and
Crawford
,
M. E.
,
1991
, “
Film-Cooling Effectiveness Downstream of a Single Row of Holes With Variable Density Ratio
,”
ASME J. Turbomach.
,
113
(
3
), pp.
442
449
.
31.
Johnson
,
B.
,
Tian
,
W.
,
Zhang
,
K.
, and
Hu
,
H.
,
2014
, “
An Experimental Study of Density Ratio Effects on the Film Cooling Injection From Discrete Holes by Using PIV and PSP Techniques
,”
Int. J. Heat Mass Transfer
,
76
, pp.
337
349
.
32.
Zhou
,
W.
,
Johnson
,
B.
, and
Hu
,
H.
,
2016
, “
Effects of Flow Compressibility and Density Ratio on Film Cooling Performance
,”
J. Propul. Power
,
33
(4), pp.
1
11
.
33.
Vinton
,
K. R.
,
Watson
,
T. B.
,
Wright
,
L. M.
,
Crites
,
D. C.
,
Morris
,
M. C.
, and
Riahi
,
A.
,
2017
, “
Combined Effects of Freestream Pressure Gradient and Density Ratio on the Film Cooling Effectiveness of round and Shaped Holes on a Flat Plate
,”
ASME J. Turbomach.
,
139
(
4
), p. 041003.
34.
Eberly
,
M.
,
2012
, “
Time-Resolved Studies of High Density Ratio Film-Cooling Flows
,”
MS thesis
, The Pennsylvania State University, University Park, PA.
35.
Eberly
,
M. K.
, and
Thole
,
K. A.
,
2014
, “
Time-Resolved Film-Cooling Flows at High and Low Density Ratios
,”
ASME J. Turbomach.
,
136
(
6
), p.
061003
.
36.
Garmann
,
D. J.
,
Visbal
,
M. R.
, and
Orkwis
,
P. D.
,
2013
, “
Three-Dimensional Flow Structure and Aerodynamic Loading on a Revolving Wing
,”
Phys. Fluids
,
25
(
3
), p.
034101
.
37.
Pletcher
,
R.
,
Tannehill
,
J.
, and
Anderson
,
D.
,
2012
,
Computational Fluid Mechanics and Heat Transfer
,
3rd ed.
,
CRC Press
,
Boca Raton, FL
.
38.
Gaitonde
,
D.
, and
Visbal
,
M.
,
1998
, “
High-Order Schemes for Navier-Stokes Equations: Algorithm and Implementation Into FDL3DI
,” Air Vehicles Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio, Report No. AFRL-VA-WP-TR-1998-3060.
39.
Visbal
,
M. R.
, and
Gaitonde
,
D. V.
,
1999
, “
High-Order-Accurate Methods for Complex Unsteady Subsonic Flows
,”
AIAA J.
,
37
(
10
), pp.
1231
1239
.
40.
Lele
,
S. K.
,
1992
, “
Compact Finite Difference Schemes With Spectral-like Resolution
,”
J. Comput. Phys.
,
103
(
1
), pp.
16
42
.
41.
Visbal
,
M. R.
, and
Gaitonde
,
D. V.
,
2002
, “
On the Use of Higher-Order Finite Difference Schemes on Curvilinear and Deforming Meshes
,”
J. Comput. Phys.
,
181
(
1
), pp.
155
185
.
42.
Visbal
,
M. R.
, and
Rizzetta
,
D. P.
,
2002
, “
Large-Eddy Simulation on Curvilinear Grids Using Compact Differencing and Filtering Schemes
,”
ASME J. Fluids Eng.
,
124
(
4
), pp.
836
847
.
43.
Garmann
,
D. J.
,
Visbal
,
M. R.
, and
Orkwis
,
P. D.
,
2013
, “
Comparative Study of Implicit and Subgrid-Scale Model Large-Eddy Simulation Techniques for low-Reynolds Number Airfoil Applications
,”
Int. J. Numer. Methods Fluids
,
71
(
12
), pp.
1546
1565
.
44.
Poggie
,
J.
,
Bisek
,
N. J.
, and
Gosse
,
R.
,
2015
, “
Resolution Effects in Compressible, Turbulent Boundary Layer Simulations
,”
Comput. Fluids
,
120
, pp.
57
69
.
45.
Beam
,
R. M.
, and
Warming
,
R. F.
,
1978
, “
An Implicit Factored Scheme for the Compressible Navier-Stokes Equations
,”
AIAA J.
,
16
(
4
), pp.
393
402
.
46.
Pulliam
,
T.
, and
Chaussee
,
D.
,
1981
, “
A Diagonal Form of an Implicit Approximate-Factorization Algorithm
,”
J. Comput. Phys.
,
39
(
2
), pp.
347
363
.
47.
Sherer
,
S. E.
,
Visbal
,
M. R.
, and
Gordnier
,
R. E.
,
2007
, “
A High-Order Overset-Grid Approach for Large Eddy Simulations
,”
ASME
Paper No. FEDSM2007-37615.
48.
Sherer
,
S. E.
, and
Visbal
,
M. R.
,
2004
, “
Implicit Large Eddy Simulations Using a High-Order Overset Grid Solver
,”
AIAA
Paper No. 2004-2530.
49.
Schlatter
,
P.
, and
Örlü
,
R.
,
2010
, “
Assessment of Direct Numerical Simulation Data of Turbulent Boundary Layers
,”
J. Fluid Mech.
,
659
, pp.
116
126
.
50.
Schlatter
,
P.
, and
Örlü
,
R.
,
2012
, “
Turbulent Boundary Layers at Moderate Reynolds Numbers: Inflow Length and Tripping Effects
,”
J. Fluid Mech.
,
710
, pp.
5
34
.
You do not currently have access to this content.