Accurate predictions of unsteady forcing on turbine blades are essential for the avoidance of high-cycle-fatigue issues during turbine engine development. Further, if one can demonstrate that predictions of unsteady interaction in a turbine are accurate, then it becomes possible to anticipate resonant-stress problems and mitigate them through aerodynamic design changes during the development cycle. A successful reduction in unsteady forcing for a transonic turbine with significant shock interactions due to downstream components is presented here. A pair of methods to reduce the unsteadiness was considered and rigorously analyzed using a three-dimensional (3D), time-resolved Reynolds-Averaged Navier-Stokes (RANS) solver. The first method relied on the physics of shock reflections itself and involved altering the stacking of downstream components to achieve a bowed airfoil. The second method considered was circumferentially asymmetric vane spacing which is well known to spread the unsteadiness due to vane-blade interaction over a range of frequencies. Both methods of forcing reduction were analyzed separately and predicted to reduce unsteady pressures on the blade as intended. Then, both design changes were implemented together in a transonic turbine experiment and successfully shown to manipulate the blade unsteadiness in keeping with the design-level predictions. This demonstration was accomplished through comparisons of measured time-resolved pressures on the turbine blade to others obtained in a baseline experiment that included neither asymmetric spacing nor bowing of the downstream vane. The measured data were further compared to rigorous post-test simulations of the complete turbine annulus including a bowed downstream vane of nonuniform pitch.

References

1.
Magge
,
S. S.
,
Sharma
,
O. P.
,
Stetson
,
G. M.
, and
Wagner
,
J. H.
,
2014
, “
Overview of Turbine Design
,”
Turbine Aerodynamics, Heat Transfer, Materials, and Mechanics
(Progress in Aerospace Sciences), Vol.
243
,
T. I.-P.
Shih
, and
V.
Yang
, eds.,
AIAA
,
Reston, VA
, pp.
1
37
.
2.
Adamczyk
,
J. J.
,
2000
, “
Aerodynamic Analysis of Multi-Stage Turbomachinery Flows in Support of Aerodynamic Design
,”
ASME J. Turbomach.
,
122
(
2
), pp.
189
217
.
3.
Dunn
,
M. G.
,
2001
, “
Convective Heat Transfer and Aerodynamics in Axial Flow Turbines
,”
ASME J. Turbomach.
,
123
(
4
), pp.
637
686
.
4.
Paniagua
,
G.
, and
Denos
,
R.
,
2007
, “
Unsteadiness in HP Turbines
,”
Advances in Turbomachinery Aero-Thermo-Mechanical Design Analysis
(VKI Lecture Series), Rhode Saint Genèse, Belgium.
5.
Seinturier
,
E.
,
Lombard
,
J.-P.
,
Dumas
,
M.
,
Dupont
,
C.
,
Sharma
,
V.
, and
Dupeux
,
J.
,
2004
, “
Forced-Response Methodology for the Design of HP Compressors Bladed Disks
,”
ASME
Paper No. GT2004-53372.
6.
Greitzer
,
E. M.
,
Tan
,
C. S.
,
Wisler
,
D. C.
,
Adamczyk
,
J. J.
, and
Strazisar
,
A. J.
,
1994
, “
Unsteady Flows in Turbomachines: Where's the Beef?
,” ASME AD-Vol.
40
, pp.
1
12
.
7.
Clark
,
J. P.
,
Koch
,
P. J.
,
Ooten
,
M. K.
,
Johnson
,
J. J.
,
Dagg
,
J.
,
McQuilling
,
M. W.
,
Huber
,
F.
, and
Johnson
,
P. D.
,
2009
, “
Design of Turbine Components to Answer Research Questions in Unsteady Aerodynamics and Heat Transfer
,” Wright-Patterson Air Force Base, Dayton, OH, AFRL Report No. AFRL-RZ-WP-TR-2009-2180.
8.
Davis
,
R. L.
,
Yao
,
J.
,
Clark
,
J. P.
,
Stetson
,
G.
,
Alonso
,
J. J.
,
Jameson
,
A.
,
Haldeman
,
C. W.
, and
Dunn
,
M. G.
,
2004
, “
Unsteady Interaction Between a Transonic Turbine Stage and Downstream Components
,”
Int. J. Rotating Mach.
,
10
(
6
), pp.
495
506
.
9.
Ooten
,
M. K.
,
Anthony
,
R. J.
,
Lethander
,
A. T.
, and
Clark
,
J. P.
,
2015
, “
Unsteady Aerodynamic Interaction in a Closely Coupled Turbine Consistent With Contrarotation
,”
ASME J. Turbomach.
,
138
(
6
), pp.
1
13
.
10.
Clark
,
J. P.
,
Beck
,
J. A.
,
Kaszynski
,
A. A.
,
Still
,
A.
, and
Ni
,
R.-H.
,
2018
, “
The Effect of Manufacturing Variations on Unsteady Interaction in a Transonic Turbine
,”
J. Turbomach.
140
(6), p. 061007.
11.
Clark
,
J. P.
,
2012
, “
Design Strategies to Mitigate Unsteady Forcing
,”
Structural Design of Aircraft Engines: Key Objectives and Techniques
(VKI Lecture Series),
G.
Paniagua
, ed.,
NATO Research and Technology Office
, Brussels, Belgium.
12.
Joly
,
M.
,
Verstraete
,
T.
, and
Paniagua
,
G.
,
2010
, “
Attenuation of Vane Distortion in a Transonic Turbine Using Optimization Strategies—Part I: Methodology
,”
ASME
Paper No. GT2010-22370.
13.
Praisner
,
T. J.
,
Grover
,
E. A.
,
Knezevici
,
D. C.
,
Popovic
,
I.
,
Sjolander
,
S. A.
,
Clark
,
J. P.
, and
Sondergaard
,
R.
,
2013
, “
Toward the Expansion of Low-Pressure-Turbine Airfoil Design Space
,”
ASME J. Turbomach.
,
135
(
6
), p.
061007
.
14.
Kerrebrock
,
J. L.
,
Epstein
,
A. H.
,
Merchant
,
A. A.
,
Guennete
,
G. R.
,
Parker
,
D.
,
Onnee
,
J.-F.
,
Neumayer
,
F.
,
Adamczyk
,
J. J.
, and
Shabbir
,
A.
,
2008
, “
Design and Test of an Aspirated Counter-Rotating Fan
,”
ASME J. Turbomach.
,
130
(
2
), p.
021004
.
15.
Huber
,
F.
,
Johnson
,
P. D.
,
Sharma
,
O. P.
,
Staubach
,
J. B.
, and
Gaddis
,
S. W.
,
1996
, “
Performance Improvement Through Indexing of Turbine Airfoils—Part 1: Experimental Investigation
,”
ASME J. Turbomach.
,
118
(
4
), pp.
630
635
.
16.
Haldeman
,
C. W.
,
Dunn
,
M. G.
,
Barter
,
J. W.
,
Green
,
B. R.
, and
Bergholz
,
R. F.
,
2005
, “
Experimental Investigation of Vane Clocking in a One and 1/2 Stage High Pressure Turbine
,”
ASME J. Turbomach.
,
127
(
3
), pp.
512
521
.
17.
Kemp
,
R. H.
,
Hirschberg
,
M. H.
, and
Morgan
,
W. C.
,
1958
, “
Theoretical and Experimental Analysis of the Reduction of Rotor Blade Vibration in Turbomachinery Through the Use of Modified Stator Vane Spacing
,” Washington, DC, Report No. NACA TN 4373.
18.
Ni
,
R. H.
,
Humber
,
W.
,
Ni
,
M.
,
Capece
,
V. R.
,
Ooten
,
M. K.
, and
Clark
,
J. P.
, “
Aerodynamic Damping Predictions for Oscillating Airfoils in Cascades Using Moving Meshes
,”
ASME
Paper No. GT2016-57017.
19.
Clark
,
J. P.
, and
Grover
,
E. A.
,
2007
, “
Assessing Convergence in Predictions of Periodic-Unsteady Flowfields
,”
ASME J. Turbomach.
,
129
(
4
), pp.
740
749
.
20.
Anthony
,
R. J.
, and
Clark
,
J. P.
,
2013
, “
A Review of the AFRL Turbine Research Facility
,”
ASME
Paper No. GT2013-94741.
21.
Graf
,
M. B.
, and
Sharma
,
O. P.
,
1996
, “
Effects of Downstream Stator Pressure Field on Upstream Rotor Performance
,”
ASME
Paper No. 96-GT-507.
22.
Fischer
,
A.
,
Riess
,
W.
, and
Seume
,
J. R.
,
2003
, “
Performance of Strongly Bowed Stators in a 4-Stage High Speed Compressor
,”
ASME
Paper. No. GT2003-38392.
23.
Smolny
,
A.
,
Blaszczak
,
J. R.
,
Krysinski
,
J.
, and
Borzecki
,
T.
,
2007
, “
Challenges and Opportunities for the Turbine Performance Improvement Through Stator Clocking and Vane Bowing
,”
ASME
Paper No. GT2007-28008.
24.
Poehler
,
T.
,
Niewoehner
,
J.
,
Jeschke
,
P.
, and
Guendogdu
,
Y.
,
2015
, “
Investigation of Nonaxisymmetric Endwall Contouring and Three-Dimensional Airfoil Design in a 1.5-Stage Axial Turbine – Part 1: Design and Novel Numerical Analysis Method
,”
ASME J. Turbomach.
,
137
(
8
), p.
081009
.
25.
Havakechian
,
S.
, and
Denton
,
J.
,
2015
, “
Three-Dimensional Blade Stacking Strategies and Understanding of Flow Physics in Low Pressure Steam Turbines—Part II: Stacking Equivalence and Differentiators
,”
J. Eng. Gas Turbines Power
,
138
(6), p. 062601.
26.
Song
,
L.
,
Guo
,
Z.
,
Li
,
J.
, and
Feng
,
Z.
,
2018
, “
Optimization and Knowledge Discovery of a Three-Dimensional Parameterized Vane With Nonaxisymmetric Endwall
,”
AIAA J. Prop. Power
,
34
, pp.
234
246
.
27.
Shapiro
,
A. H.
,
1953
,
The Dynamics and Thermodynamics of Compressible Fluid Flow
, Vol.
I
,
Wiley
,
New York
.
28.
Hancock
,
B. J.
, and
Clark
,
J. P.
,
2014
, “
Reducing Shock Interactions in a Transonic Turbine Via Three-Dimensional Aerodynamic Shaping
,”
AIAA J. Prop. Power
,
30
(
5
), pp.
1248
1256
.
29.
Clark
,
J. P.
,
Aggarwala
,
A. S.
,
Velonis
,
M. A.
,
Magge
,
S. S.
, and
Price
,
F. R.
,
2002
, “
Using CFD to Reduce Resonant Stresses on a Single-Stage, High-Pressure Turbine Blade
,”
ASME
Paper No. GT2002-30320.
30.
Kaneko
,
Y.
,
Mori
,
K.
, and
Okui
,
H.
,
2004
, “
Study on the Effect of Asymmetric Vane Spacing on Vibratory Stress of Blade
,”
ASME
Paper No. GT2004-53023.
31.
Miyakozawa
,
T.
,
Kielb
,
R. E.
, and
Hall
,
K. C.
,
2009
, “
The Effects of Aerodynamic Asymmetric Perturbations on Forced Response of Bladed Discs
,”
ASME J. Turbomach.
,
131
(
4
), p.
041008
.
32.
Ekici
,
K.
,
Kielb
,
R. E.
, and
Hall
,
K. C.
,
2010
, “
Aerodynamic Asymmetry Analysis of Unsteady Flows in Turbomachinery
,”
ASME J. Turbomach.
,
132
(
1
), p.
011006
.
33.
Monk
,
D. J.
,
Key
,
N. L.
, and
Fulayter
,
R. D.
,
2016
, “
Reduction of Aerodynamic Forcing Through Introduction of Stator Asymmetry in Axial Compressors
,”
AIAA J. Prop. Power
,
32
(
1
), pp.
134
141
.
34.
Niu
,
Y.
,
Hou
,
A.
,
Zhang
,
M.
,
Sun
,
T.
,
Wang
,
R.
, and
Guo
,
H.
,
2014
, “
Investigation on the Effect of Asymmetric Vane Spacing on the Reduction of Rotor Blade Vibration
,”
ASME
Paper No. GT2014-26710.
35.
Sun
,
T.
,
Hou
,
A.
,
Zhang
,
M.
,
Niu
,
Y.
,
Gao
,
J.
, and
Guo
,
H.
,
2015
, “
Analysis on the Reduction of Rotor Blade Vibration Using Asymmetric Vane Spacing
,”
ASME
Paper No. GT2015-42778.
36.
Ifeachor
,
E. C.
, and
Jervis
,
B. W.
,
1996
,
Digital Signal Processing
,
Addison-Wesley
,
New York
.
37.
Dunn
,
M. G.
, and
Haldeman
,
C. W.
, Jr.
,
1995
, “
Phase-Resolved Surface Pressure and Heat Transfer Measurements on the Blade of a Two-Stage Turbine
,”
ASME J. Fluids Eng.
,
117
(
4
), pp.
653
658
.
You do not currently have access to this content.