The paper investigates the effect of nonequilibrium behavior of boundary layers on the profile loss of a compressor. The investigation is undertaken using both high fidelity simulations of a midheight section of a compressor blade and a reduced order model, MISES. The solutions are validated using experimental measurements made in the embedded stage of a multistage low speed compressor. The paper shows that up to 35% of the suction surface boundary layer of the compressor blade exhibits nonequilibrium behavior. The size of this region reduces as the Reynolds number is increased. The nonequilibrium behavior was found to reduce profile loss in cases of attached transition and raise loss where transition occurs through separation.
Issue Section:
Research Papers
References
1.
Cumpsty
, N. A.
, 1989
, Compressor Aerodynamics
, Longman Scientific and Technical
, Harlow, Essex, UK.2.
Denton
, J. D.
, 1993
, “Loss Mechanisms in Turbomachines
,” ASME J. Turbomach.
, 115
(4
), pp. 621
–656
.3.
Mayle
, R. E.
, 1991
, “The Role of Laminar-Turbulent Transition in Gas Turbine Engines
,” ASME J. Turbomach.
, 113
(4
), pp. 509
–537
.4.
Walker
, G. J.
, 1993
, “The Role of Laminar-Turbulent Transition in Gas Turbine Engines a Discussion
,” ASME J. Turbomach.
, 115
(2
), pp. 207
–218
.5.
Schreiber
, H. A.
, Steinert
, W.
, and Kusters
, B.
, 2002
, “Effects of Reynolds Number and Free-Stream Turbulence on Boundary-Layer Transition in a Compressor Cascade
,” ASME J. Turbomach.
, 124
(1
), pp. 1
–9
.6.
Hughes
, J. D.
, and Walker
, G. J.
, 2001
, “Natural Transition Phenomena on an Axial Compressor Blade
,” ASME J. Turbomach.
, 123
(2
), pp. 392
–401
.7.
Green
, J.
, Weeks
, D.
, and Brooman
, J.
, 1977
, “Prediction of Turbulent Boundary Layers and Wakes in Compressible Flow by a Lag-Entrainment Method
,” Aeronautical Research Council, HMSO, London, R & M Report No. 3791
.http://citeseerx.ist.psu.edu/viewdoc/download?rep=rep1&type=pdf&doi=10.1.1.227.2338.
Drela
, M.
, 2014
, Flight Vehicle Aerodynamics
, MIT Press
, Cambridge, MA.9.
Tam
, C. K. W.
, and Webb
, J. C.
, 1993
, “Dispersion-Relation-Preserving Finite Difference Schemes for Computational Acoustics
,” J. Comput. Phys.
, 107
(2
), pp. 262
–281
.10.
Poinsot
, T. J.
, and Lele
, S. K.
, 1992
, “Boundary Conditions for Direct Simulations of Compressible Viscous Flows
,” J. Comput. Phys.
, 101
(1
), pp. 104
–129
.11.
de Bonis
, J.
, 2013
, “Solutions of the Taylor-Green Vortex Problem Using High-Resolution Explicit Finite Difference Methods
,” AIAA
Paper No. 2013-0382
.12.
Zaki
, T. A.
, Wissink
, J. G.
, Rodi
, W.
, and Durbin
, P. A.
, 2010
, “Direct Numerical Simulations of Transition in a Compressor Cascade: The Influence of Free-Stream Turbulence
,” J. Fluid Mech.
, 665
, pp. 57
–98
.13.
Yao
, Y.
, Thomas
, T.
, and Sandham
, N. D.
, 2001
, “Direct Numerical Simulation of Turbulent Flow Over a Rectangular Trailing Edge
,” Theor. Comput. Fluid Dyn.
, 14
(5
), pp. 337
–358
.14.
Phillips
, L.
, and Fyfe
, D.
, 2011
, “Turbid: A Routine for Generating Random Turbulent Inflow Data
,” Naval Research Laboratory Report, Washington, DC, Report No. NRL/MR/6040–11-9357
.http://www.dtic.mil/dtic/tr/fulltext/u2/a552556.pdf15.
Robinson
, S. K.
, 1991
, “Coherent Motions in the Turbulent Boundary Layer
,” Annu. Rev. Fluid Mech.
, 23
(1
), pp. 601
–639
.16.
Adrian
, R. J.
, 2007
, “Hairpin Vortex Organization in Wall Turbulence
,” Phys. Fluids
, 19
(4
), p. 041301.17.
Schlichting
, H.
, 1968
, Boundary-Layer Theory
, McGraw-Hill
, New York.18.
Drela
, M.
, and Youngren
, H.
, 2008
, A User's Guide to MISES 2.56
, MIT
, Cambridge, MA.Copyright © 2018 by ASME
You do not currently have access to this content.