The paper investigates the effect of nonequilibrium behavior of boundary layers on the profile loss of a compressor. The investigation is undertaken using both high fidelity simulations of a midheight section of a compressor blade and a reduced order model, MISES. The solutions are validated using experimental measurements made in the embedded stage of a multistage low speed compressor. The paper shows that up to 35% of the suction surface boundary layer of the compressor blade exhibits nonequilibrium behavior. The size of this region reduces as the Reynolds number is increased. The nonequilibrium behavior was found to reduce profile loss in cases of attached transition and raise loss where transition occurs through separation.

References

References
1.
Cumpsty
,
N. A.
,
1989
,
Compressor Aerodynamics
,
Longman Scientific and Technical
, Harlow, Essex, UK.
2.
Denton
,
J. D.
,
1993
, “
Loss Mechanisms in Turbomachines
,”
ASME J. Turbomach.
,
115
(
4
), pp.
621
656
.
3.
Mayle
,
R. E.
,
1991
, “
The Role of Laminar-Turbulent Transition in Gas Turbine Engines
,”
ASME J. Turbomach.
,
113
(
4
), pp.
509
537
.
4.
Walker
,
G. J.
,
1993
, “
The Role of Laminar-Turbulent Transition in Gas Turbine Engines a Discussion
,”
ASME J. Turbomach.
,
115
(
2
), pp.
207
218
.
5.
Schreiber
,
H. A.
,
Steinert
,
W.
, and
Kusters
,
B.
,
2002
, “
Effects of Reynolds Number and Free-Stream Turbulence on Boundary-Layer Transition in a Compressor Cascade
,”
ASME J. Turbomach.
,
124
(
1
), pp.
1
9
.
6.
Hughes
,
J. D.
, and
Walker
,
G. J.
,
2001
, “
Natural Transition Phenomena on an Axial Compressor Blade
,”
ASME J. Turbomach.
,
123
(
2
), pp.
392
401
.
7.
Green
,
J.
,
Weeks
,
D.
, and
Brooman
,
J.
,
1977
, “
Prediction of Turbulent Boundary Layers and Wakes in Compressible Flow by a Lag-Entrainment Method
,” Aeronautical Research Council, HMSO, London, R & M Report No.
3791
.http://citeseerx.ist.psu.edu/viewdoc/download?rep=rep1&type=pdf&doi=10.1.1.227.233
8.
Drela
,
M.
,
2014
,
Flight Vehicle Aerodynamics
,
MIT Press
, Cambridge, MA.
9.
Tam
,
C. K. W.
, and
Webb
,
J. C.
,
1993
, “
Dispersion-Relation-Preserving Finite Difference Schemes for Computational Acoustics
,”
J. Comput. Phys.
,
107
(
2
), pp.
262
281
.
10.
Poinsot
,
T. J.
, and
Lele
,
S. K.
,
1992
, “
Boundary Conditions for Direct Simulations of Compressible Viscous Flows
,”
J. Comput. Phys.
,
101
(
1
), pp.
104
129
.
11.
de Bonis
,
J.
,
2013
, “
Solutions of the Taylor-Green Vortex Problem Using High-Resolution Explicit Finite Difference Methods
,”
AIAA
Paper No. 2013-0382
.
12.
Zaki
,
T. A.
,
Wissink
,
J. G.
,
Rodi
,
W.
, and
Durbin
,
P. A.
,
2010
, “
Direct Numerical Simulations of Transition in a Compressor Cascade: The Influence of Free-Stream Turbulence
,”
J. Fluid Mech.
,
665
, pp.
57
98
.
13.
Yao
,
Y.
,
Thomas
,
T.
, and
Sandham
,
N. D.
,
2001
, “
Direct Numerical Simulation of Turbulent Flow Over a Rectangular Trailing Edge
,”
Theor. Comput. Fluid Dyn.
,
14
(
5
), pp.
337
358
.
14.
Phillips
,
L.
, and
Fyfe
,
D.
,
2011
, “
Turbid: A Routine for Generating Random Turbulent Inflow Data
,” Naval Research Laboratory Report, Washington, DC, Report No.
NRL/MR/6040–11-9357
.http://www.dtic.mil/dtic/tr/fulltext/u2/a552556.pdf
15.
Robinson
,
S. K.
,
1991
, “
Coherent Motions in the Turbulent Boundary Layer
,”
Annu. Rev. Fluid Mech.
,
23
(
1
), pp.
601
639
.
16.
Adrian
,
R. J.
,
2007
, “
Hairpin Vortex Organization in Wall Turbulence
,”
Phys. Fluids
,
19
(
4
), p. 041301.
17.
Schlichting
,
H.
,
1968
,
Boundary-Layer Theory
,
McGraw-Hill
, New York.
18.
Drela
,
M.
, and
Youngren
,
H.
,
2008
,
A User's Guide to MISES 2.56
,
MIT
, Cambridge, MA.
You do not currently have access to this content.