The demand for higher efficiency is ever present in the gas turbine field and can be achieved through many different approaches. While additively manufactured parts have only recently been introduced into the hot section of a gas turbine engine, the manufacturing technology shows promise for more widespread implementation since the process allows a designer to push the limits on capabilities of traditional machining and potentially impact turbine efficiencies. Pin fins are conventionally used in turbine airfoils to remove heat from locations in which high thermal and mechanical stresses are present. This study employs the benefits of additive manufacturing to make uniquely shaped pin fins, with the goal of increased performance over conventional cylindrical pin fin arrays. Triangular, star, and spherical shaped pin fins placed in microchannel test coupons were manufactured using direct metal laser sintering (DMLS). These coupons were experimentally investigated for pressure loss and heat transfer at a range of Reynolds numbers. Spacing, number of pin fins in the array, and pin fin geometry were variables that changed pressure loss and heat transfer in this study. Results indicate that the additively manufactured triangles and cylinders outperform conventional pin fin arrays, while stars and dimpled spheres did not.

References

References
1.
Kirsch
,
K. L.
, and
Thole
,
K. A.
,
2017
, “
Pressure Loss and Heat Transfer for Additively and Conventionally Manufactured Pin Fin Arrays
,”
Int. J. Heat Mass Transfer
,
108
(
Pt. B
), pp.
2502
2513
.
2.
Chyu
,
M. K.
, and
Moon
,
H. K.
,
2009
, “Effects of Height-to-Diameter Ratio of Pin Element on Heat Transfer From Staggered Pin-Fin Arrays,”
ASME
Paper No. GT2009-59814.
3.
VanFossen
,
G. J.
,
1982
, “
Heat-Transfer Coefficients for Staggered Arrays of Short Pin Fins
,”
ASME J. Eng. Power
,
104
(
2
), pp.
268
274
.
4.
Brigham
,
B. A.
, and
VanFossen
,
G. J.
,
1984
, “
Length to Diameter Ratio and Row Number Effects in Short Pin Fin Heat Transfer
,”
ASME J. Eng. Gas Turbines Power
,
106
(
1
), pp.
241
244
.
5.
Simoneau
,
R. J.
, and
VanFossen
,
G. J.
,
1984
, “
Effect of Location in an Array on Heat Transfer to a Short Cylinder in Crossflow
,”
ASME J. Heat Transfer
,
106
(
1
), pp.
42
48
.
6.
Metzger
,
D. E.
,
Fan
,
C. S.
, and
Haley
,
S. W.
,
1984
, “
Effects of Pin Shape and Array Orientation on Heat Transfer and Pressure Loss in Pin Fin Arrays
,”
ASME J. Eng. Gas Turbines Power
,
106
(
1
), pp.
252
257
.
7.
Lyall
,
M. E.
,
Thrift
,
A. A.
,
Thole
,
K. A.
, and
Kohli
,
A.
,
2011
, “
Heat Transfer From Low Aspect Ratio Pin Fins
,”
ASME J. Turbomach
,
133
(
1
), p.
011001
.
8.
Lawson
,
S. A.
,
Thrift
,
A. A.
,
Thole
,
K. A.
, and
Kohli
,
A.
,
2011
, “
Heat Transfer From Multiple Row Arrays of Low Aspect Ratio Pin Fins
,”
Int. J. Heat Mass Transfer
,
54
(
2011
), pp.
4099
4109
.
9.
Ostanek
,
J. K.
, and
Thole
,
K. A.
,
2012
, “
Flowfield Interactions in Low Aspect Ratio Pin-Fin Arrays
,”
ASME J. Turbomach
,
134
(
5
), p.
051034
.
10.
Ostanek
,
J. K.
, and
Thole
,
K. A.
,
2012
, “Effects of Varying Streamwise and Spanwise Spacing in Pin Fin Arrays,”
ASME
Paper No. GT2012-68127.
11.
Han
,
J. C.
,
Dutta
,
S.
, and
Ekkad
,
S. V.
,
2000
,
Gas Turbine Heat Transfer and Cooling Technology
,
Taylor & Francis, New York
.
12.
Uzol
,
O.
, and
Camci
,
C.
,
2005
, “
Heat Transfer, Pressure Loss and Flow Field Measurements Downstream of Staggered Two-Row Circular and Elliptical Pin Fin Arrays
,”
ASME J. Heat Transfer
,
127
(
5
), pp.
458
471
.
13.
Chyu
,
M. K.
,
Hsing
,
Y. C.
, and
Natarajan
,
V.
,
1998
, “
Convective Heat Transfer of Cubic Fin Arrays in a Narrow Channel
,”
ASME J. Turbomach.
,
12
(
2
), pp.
362
367
.
14.
Kirsch
,
K. L.
,
Ostanek
,
J. K.
,
Thole
,
K. A.
, and
Kaufman
,
E.
,
2014
, “Row Removal Heat Transfer Study for Pin Fin Arrays,”
ASME
Paper No. GT2014-25348.
15.
İzci
,
T.
,
Koz
,
M.
, and
Kosar
,
A.
,
2015
, “
The Effect of Micro Pin-Fin Shape on Thermal and Hydraulic Performance of Micro Pin-Fin Heat Sinks
,”
Heat Transfer Eng.
,
36
(
17
), pp.
1447
1457
.
16.
Siw
,
S. C.
,
Chyu
,
M. K.
, and
Alvin
,
M. A.
,
2012
, “Heat Transfer Enhancement of Internal Cooling Passage With Triangular and Semi-Circular Shaped Pin-Fin Arrays,”
ASME
Paper No. GT2012-69266.
17.
Marques
,
C.
, and
Kelly
,
K. W.
,
2004
, “
Fabrication and Performance of a Pin Fin Micro Heat Exchanger
,”
ASME J. Heat Transfer
,
126
(
3
), pp.
434
444
.
18.
Heo
,
K. Y.
,
Kihm
,
K. D.
, and
Lee
,
J. S.
,
2014
, “
Fabrication and Experiment of Micro-Pin-Finned Microchannels to Study Surface Roughness Effects on Convective Heat Transfer
,”
J. Micromech. Microeng.
,
24
(
12
), p.
125025
.
19.
Cormier
,
Y.
,
Dupuis
,
P.
,
Farjam
,
A.
,
Corbeil
,
A.
, and
Jodoin
,
B.
,
2014
, “
Additive Manufacturing of Pyramidal Pin Fins: Height and Fin Density Effects Under Forced Convection
,”
Int. J. Heat Mass Transfer
,
75
, pp.
235
244
.
20.
Dupuis
,
P.
,
Cormier
,
Y.
,
Fenech
,
M.
,
Corbeil
,
A.
, and
Jodoin
,
B.
,
2016
, “
Flow Structure Identification and Analysis in Fin Arrays Produced by Cold Spray Additive Manufacturing
,”
Int. J. Heat Mass Transfer
,
93
, pp.
301
313
.
21.
Dupuis
,
P.
,
Cormier
,
Y.
,
Fenech
,
M.
, and
Jodoin
,
B.
,
2016
, “
Heat Transfer and Flow Structure Characterization for Pin Fins Produced by Cold Spray Additive Manufacturing
,”
Int. J. Heat Mass Transfer
,
98
, pp.
650
661
.
22.
Dede
,
E. M.
,
Joshi
,
S. N.
, and
Zhou
,
F.
,
2015
, “
Topology Optimization, Additive Layer Manufacturing, and Experimental Testing of an Air-Cooled Heat Sink
,”
ASME J. Mech. Des.
,
137
(11), p. 111403.
23.
Jamshidinia
,
M.
, and
Kovacevic
,
R.
,
2015
, “
The Influence of Heat Accumulation on the Surface Roughness in Powder-Bed Additive Manufacturing
,”
Surf. Topogr. Metrol. Prop.
,
3
(
1
), p.
014003
.
24.
Bacchewar
,
P. B.
,
Singhal
,
S. K.
, and
Pandey
,
P. M.
,
2007
, “
Statistical Modelling and Optimization of Surface Roughness in the Selective Laser Sintering Process
,”
Proc. Inst. Mech. Eng. Part B
,
221
(
1
), pp.
35
52
.
25.
Wegner
,
A.
, and
Witt
,
G.
,
2012
, “
Correlation of Process Parameters and Part Properties in Laser Sintering Using Response Surface Modeling
,”
Phys. Procedia
,
39
, pp.
480
490
.
26.
Yadroitsev
,
I.
, and
Smurov
,
I.
,
2011
, “
Surface Morphology in Selective Laser Melting of Metal Powders
,”
Phys. Procedia
,
12(1
), pp.
264
270
.
27.
Khaing
,
M. W.
,
Fuh
,
J. Y. H.
, and
Lu
,
L.
,
2001
, “
Direct Metal Laser Sintering for Rapid Tooling: Processing and Characterisation of EOS Parts
,”
J. Mater. Process. Technol.
,
113
(
1–3
), pp.
269
272
.
28.
Delgado
,
J.
,
Ciurana
,
J.
, and
Rodríguez
,
C. A.
,
2012
, “
Influence of Process Parameters on Part Quality and Mechanical Properties for DMLS and SLM With Iron-Based Materials
,”
Int. J. Adv. Manuf. Technol.
,
60
(
5–8
), pp.
601
610
.
29.
Strano
,
G.
,
Hao
,
L.
,
Everson
,
R. M.
, and
Evans
,
K. E.
,
2013
, “
Surface Roughness Analysis, Modelling and Prediction in Selective Laser Melting
,”
J. Mater. Process. Technol.
,
213
(
4
), pp.
589
597
.
30.
Snyder
,
J. C.
,
Stimpson
,
C. K.
,
Thole
,
K. A.
, and
Mongillo
,
D.
,
2016
, “
Build Direction Effects on Additively Manufactured Channels
,”
ASME J. Turbomach.
,
138
(
5
), p.
051006
.
31.
Pakkanen
,
J.
,
Calignano
,
F.
,
Trevisan
,
F.
,
Lorusso
,
M.
,
Ambrosio
,
E. P.
,
Manfredi
,
D.
, and
Fino
,
P.
,
2016
, “
Study of Internal Channel Surface Roughnesses Manufactured by Selective Laser Melting in Aluminum and Titanium Alloys
,”
Metall. Mater. Trans. A
,
47
(
8
), pp.
3837
3844
.
32.
Ning
,
Y.
,
Wong
,
Y. S.
,
Fuh
,
J. Y. H.
, and
Loh
,
H. T.
,
2006
, “
An Approach to Minimize Build Errors in Direct Metal Laser Sintering
,”
IEEE Trans. Autom. Sci. Eng.
,
3
(
1
), pp.
73
80
.
33.
Stimpson
,
C. K.
,
Snyder
,
J. C.
,
Thole
,
K. A.
, and
Mongillo
,
D.
,
2016
, “
Roughness Effects on Flow and Heat Transfer for Additively Manufactured Channels
,”
ASME J. Turbomach.
,
138
(
5
), p.
051008
.
34.
Kirsch
,
K. L.
, and
Thole
,
K. A.
,
2016
, “
Heat Transfer and Pressure Loss Measurements in Additively Manufactured Wavy Microchannels
,”
ASME J. Turbomach
,
139
(
1
), p.
011007
.
35.
Stimpson
,
C. K.
,
Snyder
,
J. C.
, and
Thole
,
K. A.
,
2016
, “Scaling Roughness Effects on Pressure Loss and Heat Transfer of Additively Manufactured Channels,”
ASME J. Turbomach.
,
139
(2), p. 021003.
36.
Grimm
,
T.
,
Wiora
,
G.
, and
Witt
,
G.
,
2015
, “
Characterization of Typical Surface Effects in Additive Manufacturing With Confocal Microscopy
,”
Surf. Topogr. Metrol. Prop.
,
3
(
1
), p.
014001
.
37.
Xue
,
L.
,
Li
,
Y.
,
Chen
,
J.
, and
Wang
,
S.
,
2015
, “Laser Consolidation—A Novel Additive Manufacturing Process for Making Net-Shape Functional Metallic Components for Gas Turbine,”
ASME
Paper No. GT2015-43971.
38.
EOS GmbH
,
2014
, “
Material Data Sheet—EOS NickelAlloy IN718
,” EOS GmbH-Electro Optical Systems, Krailling, Germany, accessed Oct. 17, 2017, http://ip-saas-eos-cms.s3.amazonaws.com/public/4528b4a1bf688496/ff974161c2057e6df56db5b67f0f5595/EOS_NickelAlloy_IN718_en.pdf
39.
Incropera
,
F. P.
,
DeWitt
,
D. P.
,
Bergman
,
T. L.
, and
Lavine
,
A. S.
,
2007
,
Fundamentals of Heat and Mass Transfer
,
Wiley, New York
.
40.
Weaver
,
S. A.
,
Barringer
,
M. D.
, and
Thole
,
K. A.
,
2011
, “
Microchannels With Manufacturing Roughness Levels
,”
ASME J. Turbomach.
,
133
(
4
), p.
041014
.
41.
AliCat
,
2014
, “Mass Flow Controller—Operating Manual,” AliCat Scientific, Inc., Tucson, AZ.
42.
Kline
,
S. J.
, and
McClintock
,
F. A.
,
1953
, “
Describing the Uncertainties in Single Sample Experiments
,”
Mech. Eng.
,
75
, pp.
3
8
.
43.
Colebrook
,
C. F.
, and
White
,
C. M.
,
1937
, “
Experiments With Fluid Friction in Roughened Pipes
,”
Proc. R. Soc. London A
,
161
(
906
), pp.
367
381
.
44.
Gnielinski
,
V.
,
1975
, “
New Equations for Heat and Mass Transfer in Turbulent Pipe and Channel Flow
,”
Int. Chem. Eng.
,
16
(
2
), pp.
359
368
.https://www.bibsonomy.org/bibtex/2e5f300b68e4939294c32226ddd6a5a71/thorade
45.
Ostanek
,
J. K.
,
2012
, “Flowfield Interactions in Low Aspect Ratio Pin-Fin Arrays,”
Ph.D. dissertation
, Pennsylvania State University, State College, PA.https://etda.libraries.psu.edu/catalog/13906
46.
Wright
,
L. M.
,
Fu
,
W. L.
, and
Han
,
J. C.
,
2004
, “
Thermal Performance of Angled, V-Shaped, and W-Shaped Rib Turbulators in Rotating Recatangular Cooling Channels (AR=4:1)
,”
ASME J. Turbomach.
,
126
(
4
), pp.
604
614
.
You do not currently have access to this content.