This paper presents an innovative stability analysis and design approach for time-domain impedance boundary conditions to simulate noise propagation and radiation from a lined turbomachinery duct in the presence of a mean flow. A control-oriented model is developed for the stability analysis of the impedance boundary condition by using generalized function at the lining surface. The mean flow effect and sound propagation are considered in the model as well. Then, the numerical stability issue is analyzed by using the Bode plots before stabilized accordingly by employing the phase lead compensator method, which results in a rational transfer function. Finally, the corresponding time-domain implementation is achieved by using the so-called controllable canonical form rather than an inconvenient convolution operation. The performance of the current proposed approach is first validated in an in-duct propagation case by comparing to analytical solutions obtained by employing the Wiener–Hopf method and then demonstrated in a couple of duct acoustic problems with representative turbomachinery setups. The innovative cross-disciplinary nature of the current proposed approach can shed light on impedance problems and is very useful to time-domain acoustic simulations for turbomachinery applications.

References

References
1.
Tester
,
B.
,
1973
, “
Some Aspects of Sound Attenuation in Lined Ducts Containing Inviscid Mean Flows With Boundary Layers
,”
J. Sound Vib.
,
28
(
2
), pp.
217
245
.
2.
Eversman
,
W.
, and
Okunbor
,
D.
,
1998
, “
AFT Fan Duct Acoustic Radiation
,”
J. Sound Vib.
,
213
(
2
), pp.
235
257
.
3.
Zhang
,
X.
,
Chen
,
X.
,
Morfey
,
C.
, and
Nelson
,
P.
,
2004
, “
Computation of Spinning Modal Radiation From an Unflanged Duct
,”
AIAA J.
,
42
(
9
), pp.
1795
1801
.
4.
Özyörük
,
Y.
, and
Ahuja
,
V.
,
2004
, “
Numerical Simulation of Fore and Aft Sound Field of a Turbofan
,”
AIAA J.
,
42
(
10
), pp.
2028
2034
.
5.
Richards
,
S.
,
Chen
,
X.
,
Huang
,
X.
, and
Zhang
,
X.
,
2007
, “
Computation of Fan Noise Radiation Through an Engine Exhaust Geometry With Flow
,”
Int. J. Aeroacoustics
,
6
(
3
), pp.
223
241
.
6.
Huang
,
X.
,
Chen
,
X.
,
Ma
,
Z.
, and
Zhang
,
X.
,
2008
, “
Efficient Computation of Spinning Modal Radiation Through an Engine Bypass Duct
,”
AIAA J.
,
46
(
6
), pp.
1413
1423
.
7.
Casalino
,
D.
, and
Genito
,
M.
,
2008
, “
Turbofan Aft Noise Predictions Based on Lilley's Wave Model
,”
AIAA J.
,
46
(
1
), pp.
84
93
.
8.
Chen
,
X.
,
Huang
,
X.
, and
Zhang
,
X.
,
2009
, “
Sound Radiation From a Bypass Duct With Bifurcations
,”
AIAA J.
,
47
(
2
), pp.
429
436
.
9.
Zhang
,
X.
, and
Chen
,
X.
,
2014
, “
Broadband Wave Propagation From an Aeroengine Duct
,”
AIAA J.
,
52
(
1
), pp.
43
51
.
10.
Bianchi
,
S.
,
Corsini
,
A.
,
Rispoli
,
F.
, and
Sheard
,
A. G.
,
2011
, “
Far-Field Radiation of Tip Aerodynamic Sound Sources in Axial Fans Fitted With Passive Noise Control Features
,”
ASME J. Vib. Acoust.
,
133
(
5
), p.
051001
.
11.
Jiang
,
H.
, and
Huang
,
X.
,
2017
, “
Efficient Impedance Eductions for Liner Tests in Grazing Flow Incidence Tube
,”
ASME J. Vib. Acoust.
,
139
(
3
), p.
031002
.
12.
Prasad
,
D.
, and
Feng
,
J.
,
2005
, “
Propagation and Decay of Shock Waves in Turbofan Engine Inlets
,”
ASME J. Turbomach.
,
127
(
1
), pp.
118
127
.
13.
Tucker
,
P.
,
Eastwood
,
S.
,
Klostermeier
,
C.
,
Xia
,
H.
,
Ray
,
P.
,
Tyacke
,
J.
, and
Dawes
,
W.
,
2012
, “
Hybrid LES Approach for Practical Turbomachinery Flows—Part II: Further Applications
,”
ASME J. Turbomach.
,
134
(
2
), p.
021024
.
14.
Ouyang
,
H.
,
Yian
,
J.
,
Li
,
Y.
,
Zheng
,
Z.
, and
Du
,
Z.
,
2012
, “
Internal Flow and Noise Investigations About the Cross-Flow Fan With Different Blade Angles
,”
ASME J. Turbomach.
,
134
(
5
), p.
051023
.
15.
Ingard
,
U.
,
1959
, “
Influence of Fluid Motion Past a Plane Boundary on Sound Reflection, Absorption, and Transmission
,”
J. Acoust. Soc. Am.
,
31
(
7
), pp.
1035
1036
.
16.
Myers
,
M.
,
1980
, “
On the Acoustic Boundary Condition in the Presence of Flow
,”
J. Sound Vib.
71
(
3
), pp.
429
434
.
17.
Bogey
,
C.
,
Bailly
,
C.
, and
Juvé
,
D.
,
2002
, “
Computation of Flow Noise Using Source Terms in Linearized Euler's Equations
,”
AIAA J.
,
40
(
2
), pp.
235
243
.
18.
Brambley
,
E.
,
2011
, “
Well-Posed Boundary Condition for Acoustic Liners in Straight Ducts With Flow
,”
AIAA J.
,
49
(
6
), pp.
1272
1282
.
19.
Tam
,
C.
, and
Webb
,
J.
,
1993
, “
Dispersion-Relation-Preserving Finite Difference Schemes for Computational Acoustics
,”
J. Comput. Phys.
,
107
(
2
), pp.
262
281
.
20.
Özyörük
,
Y.
,
Long
,
L.
, and
Jones
,
M. G.
,
1998
, “
Time-Domain Numerical Simulation of a Flow-Impedance Tube
,”
J. Comput. Phys.
,
146
(
1
), pp.
29
57
.
21.
Rienstra
,
S.
,
2007
, “
Acoustic Scattering at a Hard-Soft Lining Transition in a Flow Duct
,”
J. Eng. Math.
,
59
(
4
), pp.
451
475
.
22.
Peers
,
E.
, and
Huang
,
X.
,
2013
, “
High-Order Schemes for Predicting Computational Aeroacoustic Propagation With Adaptive Mesh Refinement
,”
Acta Mech. Sin.
,
29
(
2
), pp.
1
11
.
23.
Yu
,
J.
,
Ruiz
,
M.
, and
Kwan
,
H.
,
2008
, “
Validation of Goodrich Perforate Liner Impedance Model Using NASA Langley Test Data
,”
AIAA
Paper No. 2008–2930.
24.
Tam
,
C. K. W.
, and
Auriault
,
L.
,
1996
, “
Time-Domain Impedance Boundary Conditions for Computational Aeroacoustics
,”
AIAA J.
,
34
(
5
), pp.
917
923
.
25.
Eduardo
,
S.
,
1998
,
Mathematical Control Theory: Deterministic Finite Dimensional Systems
,
2nd ed.
, Springer-Verlag, New York.
26.
Eversman
,
W.
, and
Beckemeyer
,
R.
,
1972
, “
Transmission of Sound in Ducts With Thin Shear Layers: Convergence to the Uniform Flow Case
,”
J. Acoust. Soc. Am.
,
52
(
1B
), pp.
216
220
.
27.
Brambley
,
E. J.
,
2009
, “
Fundamental Problems With the Model of Uniform Flow Over Acoustic Linings
,”
J. Sound Vib.
,
322
(
4–5
), pp.
1026
1037
.
28.
Renou
,
Y.
, and
Auregan
,
Y.
,
2011
, “
Failure of the Ingard–Myers Boundary Condition for a Lined Duct: An Experimental Investigation
,”
J. Acoust. Soc. Am.
,
130
(
1
), pp.
52
60
.
29.
Rienstra
,
S.
, and
Darau
,
M.
,
2011
, “
Boundary-Layer Thickness Effects of the Hydrodynamic Instability Along an Impedance Wall
,”
J. Fluid Mech.
,
671
, pp.
559
573
.
30.
Fung
,
K.
,
Ju
,
H.
, and
Tallapragada
,
B.
,
2000
, “
Impedance and Its Time-Domain Extensions
,”
AIAA J.
,
38
(
1
), pp.
30
38
.
31.
Fung
,
K.
, and
Ju
,
H.
,
2001
, “
Broadband Time-Domain Impedance Models
,”
AIAA J.
,
39
(
8
), pp.
1449
1454
.
32.
Ju
,
H.
, and
Fung
,
K.
,
2001
, “
Time-Domain Impedance Boundary Conditions With Mean Flow Effects
,”
AIAA J.
,
39
(
9
), pp.
1683
1690
.
33.
Gabard
,
G.
,
2013
, “
A Comparison of Impedance Boundary Conditions for Flow Acoustics
,”
J. Sound Vib.
,
332
(
4
), pp.
714
724
.
34.
Richter
,
C.
,
Hay
,
J.
,
Panek
,
L.
, and
Schönwald
,
N.
,
2011
, “
A Review of Time-Domain Impedance Modelling and Applications
,”
J. Sound Vib.
,
330
(
1
), pp.
3859
3873
.
35.
Liu
,
X.
,
Huang
,
X.
, and
Zhang
,
X.
,
2014
, “
Stability Analysis and Design of Time-Domain Acoustic Impedance Boundary Conditions for Lined Duct With Mean Flow
,”
J. Acoust. Soc. Am.
,
136
(
5
), pp.
2441
2452
.
36.
Liu
,
X.
, and
Huang
,
X.
,
2015
, “
Stabilized Time-Domain Impedance Model and the Application in Bypass Duct Noise Simulations
,”
AIAA
Paper No. 2015-2676.
37.
Zhong
,
S.
,
Zhang
,
X.
, and
Huang
,
X.
,
2016
, “
A Controllable Canonical Form of Time Domain Impedance Boundary Condition for Broadband Aeroacoustics Computation
,”
J. Comput. Phys.
,
313
(
5
), pp.
713
725
.
38.
Zhang
,
X.
,
Chen
,
X.
, and
Morfey
,
C.
,
2005
, “
Acoustic Radiation From a Semi-Infinite Duct With a Subsonic Jet
,”
Int. J. Aeroacoustics
,
4
(
1–2
), pp.
169
184
.
39.
Huang
,
X.
,
Zhang
,
X.
, and
Richards
,
S.
,
2008
, “
Adaptive Mesh Refinement Computation of Acoustic Radiation From an Engine Intake
,”
Aerosp. Sci. Technol.
,
12
(
5
), pp.
418
426
.
40.
Reymen
,
Y.
,
Baelmans
,
M.
, and
Desmet
,
W.
,
2008
, “
Efficient Implementation of Tam and Auriault's Time-Domain Impedance Boundary Condition
,”
AIAA J.
,
46
(
9
), pp.
2368
2376
.
41.
Li
,
X.
,
Li
,
X.
, and
Tam
,
C.
,
2012
, “
Improved Multipole Broadband Time-Domain Impedance Boundary Condition
,”
AIAA J.
,
50
(
4
), pp.
980
984
.
42.
Richter
,
C.
,
Thiele
,
F.
,
Li
,
X.
, and
Zhuang
,
M.
,
2007
, “
Comparison of Time-Domain Impedance Boundary Conditions for Lined Duct Flows
,”
AIAA J.
,
45
(
6
), pp.
1333
1345
.
43.
Munt
,
R.
,
1977
, “
The Interaction of Sound With a Subsonic Jet Issuing From a Semi-Infinite Cylindrical Pipe
,”
J. Fluids Mech.
,
83
(
4
), pp.
609
640
.
44.
Rienstra
,
S.
,
1984
, “
Acoustic Radiation From a Semi-Infinite Annular Duct in a Uniform Subsonic Mean Flow
,”
J. Sound Vib.
,
94
(
2
), pp.
267
288
.
45.
Gabard
,
G.
, and
Astley
,
R.
,
2006
, “
Theoretical Model for Sound Radiation From Annular Jet Pipes: Far- and Near-Field Solutions
,”
J. Fluid Mech.
,
549
, pp.
315
341
.
46.
Ffowcs-Williams
,
J.
, and
Hawkings
,
D.
,
1969
, “
Sound Generation by Turbulence and Surfaces in Arbitrary Motion
,”
Philos. Trans. R. Soc. London, A
,
264
(
1151
), pp.
321
342
.
47.
Hu
,
F.
,
Hussaini
,
M.
, and
Manthey
,
J.
,
1996
, “
Low-Dissipation and Low-Dispersion Runge-Kutta Schemes for Computational Acoustics
,”
J. Comput. Phys.
,
124
(
1
), pp.
177
191
.
48.
Ashcroft
,
G.
, and
Zhang
,
X.
,
2003
, “
Optimized Prefactored Compact Schemes
,”
J. Comput. Phys.
,
190
(
2
), pp.
459
477
.
49.
Ray
,
J.
,
Kennedy
,
C.
,
Lefantzi
,
S.
, and
Najm
,
H.
,
2007
, “
Using High-Order Methods on Adaptively Refined Block-Structured Meshes—Discretizations, Interpolations, and Filters
,”
SIAM J. Sci. Comput.
,
29
(
1
), pp.
139
181
.
50.
Richards
,
S.
,
Zhang
,
X.
, and
Nelson
,
P. A.
,
2004
, “
The Evaluation of Non-Reflecting Boundary Conditions for Duct Acoustic Computation
,”
J. Sound Vib.
,
270
(
3
), pp.
539
557
.
51.
Agarwal
,
A.
,
Morris
,
P.
, and
Mani
,
R.
,
2004
, “
Calculation of Sound Propagation in Nonuniform Flows: Suppression of Instability Waves
,”
AIAA J.
,
42
(
1
), pp.
80
88
.
52.
Liu
,
X.
,
Jiang
,
H.
,
Huang
,
X.
, and
Chen
,
S.
,
2016
, “
Theoretical Model of Scattering From Flow Ducts With Semi-Infinite Axial Liner Splices
,”
J. Fluid Mech.
,
786
, pp.
62
83
.
You do not currently have access to this content.