In this work, the impact of the airfoil shape on flutter is investigated. Flutter occurs when the blade structure is absorbing energy from its surrounding fluid leading to hazardous amplification of vibrations. The key for a more stable design is the local modification of the blade motion induces unsteady pressure, which is responsible for local stability. Especially for free-standing blades, where most exciting aerodynamic work transfer is found at the upper tip sections, a reshaping of the airfoil is expected to beneficially influence stability. Two approaches are pursued in this work. This first approach is based on flow physics considerations. The unsteady pressure field is decomposed into four physical mechanisms or effects and each effect investigated. The second approach is used to validate the conclusions made in the theoretical part by numerical optimizing the geometry of a representative turbine blade. Selected optimized designs are picked and compared with each other in terms of local stability, aerodynamics, and robustness with respect to the boundary conditions. Both approaches are applied for a freestanding and interlocked turbine blade section. The found design potential is discussed and the link to the differences mechanisms, introduced in the first part, established. Based on the observations made, design recommendations are made for a flutter-reduced turbine design.

References

References
1.
Thermann
,
H.
, and
Niehuis
,
R.
,
2005
, “
Unsteady Navier–Stokes Simulation of a Transonic Flutter Cascade Near-Stall Conditions Applying Algebraic Transition Models
,”
ASME J. Turbomach.
,
128
(
3
), pp.
474
483
.
2.
Isomura
,
K.
, and
Giles
,
M. B.
,
1998
, “
A Numerical Study of Flutter in a Transonic Fan
,”
ASME J. Turbomach.
,
120
(
3
), pp.
500
507
.
3.
McBean
,
I.
,
Hourigan
,
K.
,
Thompson
,
M.
, and
Liu
,
F.
,
2005
, “
Prediction of Flutter of Turbine Blades in a Transonic Annular Cascade
,”
ASME J. Fluids Eng.
,
127
(
6
), pp.
1053
1058
.
4.
Platzer
,
M.
,
1982
, “
Transonic Blade Flutter: A Survey of New Developments
,”
Shock Vib. Digest
,
14
(
7
), pp.
11
20
.
5.
Hanamura
,
Y.
,
Tanaka
,
H.
, and
Yamaguchi
,
K.
,
1980
, “
A Simplified Method to Measure Unsteady Forces Acting on the Vibrating Blades in Cascade
,”
Bull. JSME
,
23
(
180
), pp.
880
887
.
6.
Vahdati
,
M.
,
Smith
,
N.
, and
Zhao
,
F.
,
2015
, “
Influence of Intake on Fan Blade Flutter
,”
ASME J. Turbomach.
,
137
(
8
), p.
081002
.
7.
Vahdati
,
M.
,
Simpson
,
G.
, and
Imregun
,
M.
, “
Mechanisms for Wide-Chord Fan Blade Flutter
,”
ASME J. Turbomach.
,
133
(
4
), p.
041029
.
8.
Corral
,
R.
, and
Gallardo
,
J. M.
,
2014
, “
Nonlinear Dynamics of Bladed Disks With Multiple Unstable Modes
,”
AIAA J.
,
52
(
6
), pp.
1124
1132
.
9.
He
,
L.
, and
Denton
,
J.
,
1994
, “
Three-Dimensional Time-Marching Inviscid and Viscous Solutions for Unsteady Flows Around Vibrating Blades
,”
ASME J. Turbomach.
,
116
(
3
), pp.
469
476
.
10.
Clark
,
W. S.
, and
Hall
,
K. C.
,
1999
, “
A Time-Linearized Navier–Stokes Analysis of Stall Flutter
,”
ASME J. Turbomach.
,
122
(
3
), pp.
467
476
.
11.
Hall
,
K. C.
,
Clark
,
W. S.
, and
Lorence
,
C. B.
,
1994
, “
A Linearized Euler Analysis of Unsteady Transonic Flows in Turbomachinery
,”
ASME J. Turbomach.
,
116
(
3
), pp.
477
488
.
12.
Kersken
,
H.-P.
,
Frey
,
C.
,
Voigt
,
C.
, and
Ashcroft
,
G.
,
2012
, “
Time-Linearized and Time-Accurate 3D RANS Methods for Aeroelastic Analysis in Turbomachinery
,”
ASME J. Turbomach.
,
134
(
5
), p.
051024
.
13.
Kielb
,
R. E.
,
Barter
,
J.
,
Chernysheva
,
O.
, and
Fransson
,
T.
,
2006
, “
Flutter Design of Low Pressure Turbine Blades With Cyclic Symmetric Modes
,”
Unsteady Aerodynamics, Aeroacoustics and Aeroelasticity of Turbomachines
,
Springer
,
Dordrecht, The Netherlands
, pp.
41
52
.
14.
Carta
,
F. O.
,
1967
, “
Coupled Blade-Disk-Shroud Flutter Instabilities in Turbojet Engine Rotors
,”
ASME J. Eng. Power
,
89
(
3
), pp.
419
426
.
15.
Panovsky
,
J.
, and
Kielb
,
R. E.
,
2000
, “
A Design Method to Prevent Low Pressure Turbine Blade Flutter
,”
ASME J. Eng. Gas Turbines Power
,
122
(
1
), pp.
89
98
.
16.
Meingast
,
M.
,
Kielb
,
R. E.
, and
Thomas
,
J. P.
,
2009
, “
Preliminary Flutter Design Method For Supersonic Low Pressure Turbines
,”
ASME
Paper No. GT2009-59177.
17.
Waite
,
J. J.
, and
Kielb
,
R. E.
,
2015
, “
The Impact of Blade Loading and Unsteady Pressure Bifurcations on Low-Pressure Turbine Flutter Boundaries
,”
ASME J. Turbomach.
,
138
(
4
), p.
041002
.
18.
Corral
,
R.
, and
Vega
,
A.
,
2016
, “
Physics of Vibrating Turbine Airfoils at Low Reduced Frequency
,”
J. Propul. Power
,
32
(
2
), pp.
325
336
.
19.
Corral
,
R.
, and
Vega
,
A.
,
2015
, “
The Low Reduced Frequency Limit of Vibrating Airfoils—Part I: Theoretical Analysis
,”
ASME J. Turbomach.
,
138
(
2
), p.
021004
.
20.
Vega
,
A.
, and
Corral
,
R.
,
2016
, “
Quantification of the Influence of Unsteady Aerodynamic Loading on the Damping Characteristics of Airfoils Oscillating at Low Reduced Frequency—Part II: Numerical Verification
,”
ASME J. Turbomach.
,
139
(
3
), p.
031010
.
21.
Srivastava
,
R.
, and
Keith
,
T. G.
, Jr.,
2004
, “
Shock Induced Flutter of Turbomachinery Blade Row
,”
ASME
Paper No. GT2004-53479.
22.
Srivastava
,
R.
, and
Keith
,
T. G.
,
2005
, “
Influence of Shock Wave on Turbomachinery Blade Row Flutter
,”
J. Propul. Power
,
21
(
1
), pp.
167
174
.
23.
Peeren
,
C.
,
Schmitt
,
S.
, and
Vogeler
,
K.
,
2015
, “
Turbine Profile Optimization to Maximize Aerodynamic Damping
,” ISUAAAT14 Paper No. I14-S7-2.
24.
He
,
L.
, and
Wang
,
D. X.
,
2009
, “
Concurrent Blade Aerodynamic-Aero-Elastic Design Optimization Using Adjoint Method
,”
ASME J. Turbomach.
,
133
(
1
), p.
011021
.
25.
Eberhart
,
R.
, and
Kennedy
,
J.
,
1995
, “
A New Optimizer Using Particle Swarm Theory
,”
Sixth International Symposium on Micro Machine Human Science
(
MHS
), Nagoya, Japan, Oct. 4–6, pp.
39
43
.
26.
Reyes-Sierra
,
M.
, and
Coello
,
C. A. C.
, 2006, “
Multi-Objective Particle Swarm Optimizers: A Survey of the State-of-the-Art
,”
Int. J. Comput. Intell. Res.
,
2
(
3
), pp.
287
308
.
27.
Deb
,
K.
,
Pratap
,
A.
,
Agarwal
,
S.
, and
Meyarivan
,
A.
,
2002
, “
A Fast and Elitist Multi-Objective Genetic Algorithm: NSGA-II
,”
IEEE Trans. Evol. Comput.
,
6
(
2
), pp.
182
197
.
28.
Ray
,
T.
, and
Liew
,
K. M.
,
2002
, “
A Swarm Metaphor for Multi-Objective Design Optimization
,”
Eng. Optim.
,
34
(
2
), pp.
141
153
.
29.
Bölcs
,
A.
, and
Fransson
,
T.
,
1986
, “
Aeroelasticity in Turbomachinery Comparison of Theoretical and Experimental Cascade Results
,”
Communication Du Laboratoire de Thermique Appliquee et de Turbomachines
, Lausanne EPFL, Lausanne, Switzerland.
You do not currently have access to this content.