The growing trend to achieve a higher turbine inlet temperature (TIT) in the modern gas turbine industry requires a more efficient and advanced cooling system design. Therefore, a complete study of heat transfer is necessary to predict the thermal loadings on the gas turbine vanes and blades. In the current work, a predictive model for the gas turbine blade cooling analysis has been developed. The model is capable of calculating the distribution of coolant mass flow rate (MFR) and metal temperatures of a turbine blade using the mass and energy balance equations at given external and internal boundary conditions. Initially, the performance of the model is validated by demonstrating its capability to predict the temperature distributions for a NASA E3 blade. The model is capable of predicting the temperature distributions with reasonable accuracy, especially on the suction side (SS). Later, this paper documents the overall analysis for the same blade profile but at different boundary conditions to demonstrate the flexibility of the model for other cases. Additionally, guidelines are provided to obtain external heat transfer coefficient (HTC) distributions for the highly turbulent mainstream.

References

1.
Han
,
J. C.
,
Ortman
,
D. W.
, and
Lee
,
C. P.
,
1982
, “
A Computer Model for Gas Turbine Blade Cooling Analysis
,”
ASME
Paper No. 82-JPGC-GT-6.
2.
Hylton
,
L. D.
,
Mihelc
,
M. S.
,
Turner
,
E. R.
,
Nealy
,
D. A.
, and
York
,
R. E.
,
1983
, “
Analytical and Experimental Evaluation of the Heat Transfer Distribution Over the Surfaces of Turbine Vanes
,” Report No.
NASA-CR-168015
.
3.
Zecchi
,
S.
,
Arcangeli
,
L.
,
Facchini
,
B.
, and
Coutandin
,
D.
,
2004
, “
Features of a Cooling System Simulation Tool Used in Industrial Preliminary Design Stage
,”
ASME
Paper No. GT2004-53547.
4.
Alizadeh
,
M.
,
Izadi
,
A.
, and
Fathi
,
A.
,
2014
, “
Sensitivity Analysis on Turbine Blade Temperature Distribution Using Conjugate Heat Transfer Simulation
,”
ASME J. Turbomach.
,
136
(1), p.
011001
.
5.
Luo
,
J.
, and
Razinsky
,
E. H.
,
2007
, “
Conjugate Heat Transfer Analysis of a Cooled Turbine Vane Using the V2F Turbulence Model
,”
ASME J. Turbomach.
,
129
(
4
), pp.
773
781
.
6.
Takahashi
,
T.
,
Watanabe
,
K.
, and
Sakai
,
T.
,
2005
, “
Conjugate Heat Transfer Analysis of a Rotor Blade With Rib-Roughened Internal Cooling Passages
,”
ASME
Paper No. GT2005-68227.
7.
Carcasci
,
C.
, and
Facchini
,
B.
,
1996
, “
A Numerical Procedure to Design Internal Cooling of Gas Turbine Stator Blades
,”
Rev. Générale Therm.
,
35
(
412
), pp.
257
268
.
8.
Andreini
,
A.
,
Bonini
,
A.
,
Carcasci
,
C.
,
Facchini
,
B.
,
Innocenti
,
L.
, and
Ciani
,
A.
,
2012
, “
Conjugate Heat Transfer Calculations on GT Rotor Blade for Industrial Applications: Part I—Equivalent Internal Fluid Network Setup
,”
ASME
Paper No. GT2012-69846.
9.
Brillert
,
D.
,
Dohmen
,
H. J.
,
Benra
,
F. K.
,
Schneider
,
O.
, and
Mirzamoghadam
,
A. V.
,
2003
, “
Application of Conjugate CFD to the Internal Cooling Air Flow System of Gas Turbines
,”
ASME
Paper No. GT2003-38471.
10.
Yamane
,
T.
,
Yoshida
,
T.
,
Enomoto
,
S.
,
Takaki
,
R.
, and
Yamamoto
,
K.
,
2004
, “
Conjugate Simulation of Flow and Heat Conduction With a New Method for Faster Calculation
,”
ASME
Paper No. GT2004-53680.
11.
Sipatov
,
A.
,
Gomzikov
,
L.
,
Latyshev
,
V.
, and
Gladysheva
,
N.
,
2009
, “
Three Dimensional Heat Transfer Analysis of High Pressure Turbine
,”
ASME
Paper No. GT2009-59163.
12.
Mangani
,
L.
,
Cerutti
,
M.
,
Maritano
,
M.
, and
Spel
,
M.
,
2010
, “
Conjugate Heat Transfer Analysis of NASA C3X Film Cooled Vane With an Object-Oriented CFD Code
,”
ASME
Paper No. GT2010-23458.
13.
Chi
,
Z.
,
Ren
,
J.
, and
Jia
,
H.
,
2013
, “
Coupled Aero-Thermodynamics Optimization for the Cooling System of a Turbine Vane
,”
ASME
Paper No. GT2013-94528.
14.
Heidmann
,
J. D.
,
Kassab
,
A. J.
,
Divo
,
E. A.
,
Rodriguez
,
F.
, and
Steinthorsson
,
E.
,
2003
, “
Conjugate Heat Transfer Effects on a Realistic Film-Cooled Turbine Vane
,”
ASME
Paper No. GT2003-38553.
15.
Rigby
,
D. L.
, and
Lepicovsky
,
J.
,
2001
, “
Conjugate Heat Transfer Analysis of Internally Cooled Configurations
,”
ASME
Paper No. 2001-GT-0405.
16.
Downs
,
J. P.
, and
Landis
,
K. K.
,
2009
, “
Turbine Cooling Systems Design: Past, Present and Future
,”
ASME
Paper No. GT2009-59991.
17.
Han
,
J. C.
,
Dutta
,
S.
, and
Ekkad
,
S. V.
,
2012
,
Gas Turbine Heat Transfer and Cooling Technology
, 2nd ed.,
CRC Press
,
New York
.
18.
Halila
,
E. E.
,
Lenahan
,
D. T.
, and
Thomas
,
T. T.
,
1982
, “
Energy Efficient Engine High Pressure Turbine Test Hardware Detailed Design Report
,” NASA Lewis Research Center, Cleveland, OH, Report No. NASA-CR-167955.
19.
Jakob
,
M.
,
1938
, “
Heat Transfer and Flow Resistance in Cross Flow of Gases Over Tube Banks
,”
Trans. ASME
,
60
(38), pp.
384
386
.
20.
Goldstein
,
R. J.
,
1971
, “
Film Cooling
,”
Advances in Heat Transfer
, Vol.
7
,
Academic Press
,
New York
.
21.
Jabbari
,
M. Y.
, and
Goldstein
,
R. J.
,
1978
, “
Adiabatic Wall Temperature and Heat Transfer Downstream of Injection Through Two Rows of Holes
,”
ASME J. Eng. Power
,
100
(
2
), pp.
303
307
.
22.
Colban
,
W. F.
,
Thole
,
K. A.
, and
Bogard
,
D.
,
2010
, “
A Film-Cooling Correlation for Shaped Holes on a Flat-Plate Surface
,”
ASME J. Turbomach.
,
133
(1), p.
011002
.
23.
Chen
,
A. F.
,
Li
,
S. J.
, and
Han
,
J. C.
,
2014
, “
Film Cooling With Forward and Backward Injection for Cylindrical and Fan-Shaped Holes Using PSP Measurement Technique
,”
ASME
Paper No. GT2014-26232.
24.
Takeishi
,
K.
,
Aoki
,
S.
,
Sato
,
T.
, and
Tsukagoshi
,
K.
,
1992
, “
Film Cooling on a Gas Turbine Rotor Blade
,”
ASME J. Turbomach.
,
114
(
4
), pp.
828
834
.
25.
Li
,
S. J.
,
Yang
,
S. F.
, and
Han
,
J. C.
,
2014
, “
Effect of Coolant Density on Leading Edge Showerhead Film Cooling Using the Pressure Sensitive Paint Measurement Technique
,”
ASME J. Turbomach.
,
136
(5), p.
051011
.
26.
Kreith
,
F.
, and
Bohn
,
M. S.
,
1988
,
Principles of Heat Transfer
, 5th ed.,
PWS Publishing
,
Boston, MA
, pp.
292
and
452
.
27.
Ames
,
F. E.
,
1997
, “
The Influence of Large Scale, High Intensity Turbulence on Vane Heat Transfer
,”
ASME J. Turbomach.
,
119
(
1
), pp.
23
30
.
28.
Han
,
J. C.
, and
Park
,
J. S.
,
1988
, “
Developing Heat Transfer in Rectangular Channels With Rib Turbulators
,”
J. Heat Mass Transfer
,
31
(
1
), pp.
183
195
.
29.
Chupp
,
R. E.
,
Helms
,
H. E.
,
Mcfadden
,
P. W.
, and
Brown
,
T. R.
,
1969
, “
Evaluation of Internal Heat Transfer Coefficients for Impingement Cooled Turbine Airfoils
,”
AIAA J. Aircr.
,
6
(3), pp.
203
208
.
30.
Metzger
,
D. E.
,
Shepard
,
W. B.
, and
Haley
,
S. W.
,
1986
, “
Row Resolved Heat Transfer Variations in Pin Fin Arrays Including Effects of Non-Uniform Arrays and Flow Convergence
,”
ASME
Paper No. 86-GT-132.
31.
Chowdhury
,
N.
, and
Ames
,
F. E.
,
2013
, “
The Response of High Intensity Turbulence in the Presence of Large Stagnation Regions
,”
ASME
Paper No. GT2013-95055.
You do not currently have access to this content.