In order to prevent critical effects due to pulsed detonation propulsion, e.g., incidence fluctuations, an elastomer-piezo-adaptive stator blade with a deformable front part is developed. Numerical investigations with respect to the interaction of fluid and structure including the piezoelectric properties and the hyperelastic material behavior of an elastomer membrane are conducted in order to investigate the concept of the elastomer-piezo-adaptive blade for developing the best suitable concept for subsequent experiments with a stator cascade in a wind tunnel. Results of numerical investigations of the structure-dynamic and fluid mechanical behavior of the elastomer-piezo-adaptive blade by using a novel fluid–structure-piezoelectric-elastomer-interaction simulation (FSPEI simulation) show that the latent danger of a laminar flow separation at the leading edge at incidence fluctuations can be prevented by using an adaptive blade. Therefore, the potential of the concept of the elastomer-piezo-adaptive blade for active flow control is verified. Furthermore, it is essential to consider the interactions between fluid and structure of the transient FSPEI simulations, since not only the deformation of the adaptive blade affects the flow around the blade, the flow has a significant effect on the dynamic behavior of the adaptive blade, as well.
Skip Nav Destination
Article navigation
September 2017
Research-Article
Numerical Investigation of an Elastomer-Piezo-Adaptive Blade for Active Flow Control of a Nonsteady Flow Field Using Fluid–Structure Interaction Simulations
Tien Dat Phan,
Tien Dat Phan
Department of Engineering Design,
Micro and Medical,
Berlin Institute of Technology,
Berlin 10623, Germany
e-mail: t.phan@tu-berlin.de
Micro and Medical,
Berlin Institute of Technology,
Berlin 10623, Germany
e-mail: t.phan@tu-berlin.de
Search for other works by this author on:
Patrick Springer,
Patrick Springer
Department of Engineering Design,
Micro and Medical,
Berlin Institute of Technology,
Berlin 10623, Germany
e-mail: patrick.springer@campus.tu-berlin.de
Micro and Medical,
Berlin Institute of Technology,
Berlin 10623, Germany
e-mail: patrick.springer@campus.tu-berlin.de
Search for other works by this author on:
Robert Liebich
Robert Liebich
Department of Engineering Design,
Micro and Medical,
Berlin Institute of Technology,
Berlin 10623, Germany
e-mail: robert.liebich@tu-berlin.de
Micro and Medical,
Berlin Institute of Technology,
Berlin 10623, Germany
e-mail: robert.liebich@tu-berlin.de
Search for other works by this author on:
Tien Dat Phan
Department of Engineering Design,
Micro and Medical,
Berlin Institute of Technology,
Berlin 10623, Germany
e-mail: t.phan@tu-berlin.de
Micro and Medical,
Berlin Institute of Technology,
Berlin 10623, Germany
e-mail: t.phan@tu-berlin.de
Patrick Springer
Department of Engineering Design,
Micro and Medical,
Berlin Institute of Technology,
Berlin 10623, Germany
e-mail: patrick.springer@campus.tu-berlin.de
Micro and Medical,
Berlin Institute of Technology,
Berlin 10623, Germany
e-mail: patrick.springer@campus.tu-berlin.de
Robert Liebich
Department of Engineering Design,
Micro and Medical,
Berlin Institute of Technology,
Berlin 10623, Germany
e-mail: robert.liebich@tu-berlin.de
Micro and Medical,
Berlin Institute of Technology,
Berlin 10623, Germany
e-mail: robert.liebich@tu-berlin.de
1Corresponding author.
Contributed by the International Gas Turbine Institute (IGTI) of ASME for publication in the JOURNAL OF TURBOMACHINERY. Manuscript received December 7, 2016; final manuscript received February 25, 2017; published online April 11, 2017. Assoc. Editor: Rakesh Srivastava.
J. Turbomach. Sep 2017, 139(9): 091004 (10 pages)
Published Online: April 11, 2017
Article history
Received:
December 7, 2016
Revised:
February 25, 2017
Citation
Phan, T. D., Springer, P., and Liebich, R. (April 11, 2017). "Numerical Investigation of an Elastomer-Piezo-Adaptive Blade for Active Flow Control of a Nonsteady Flow Field Using Fluid–Structure Interaction Simulations." ASME. J. Turbomach. September 2017; 139(9): 091004. https://doi.org/10.1115/1.4036107
Download citation file:
Get Email Alerts
Aerodynamic Performance and Leakage Flow in Turbine Cascades With Sweeping Jet Actuators
J. Turbomach (June 2023)
Related Articles
Influencing Parameters of Tip Blowing Interacting With Rotor Tip Flow
J. Turbomach (February,2017)
Turbomachinery Active Subspace Performance Maps
J. Turbomach (April,2018)
Stall Inception Analysis of Transonic Compressors With Chordwise and Axial Sweep
J. Turbomach (April,2018)
Related Proceedings Papers
Related Chapters
Aerodynamic Performance Analysis
Axial-Flow Compressors
Other Components and Variations
Axial-Flow Compressors
Stability and Range
Design and Analysis of Centrifugal Compressors