Measurements of the mass/heat transfer coefficients on the blade and end wall surfaces of a linear turbine cascade are compared to numerical predictions using the standard shear stress transport (SST) closure and the SST model in combination with the Reθγ transition model (SST-TRANS). Experiments were carried out in a wind tunnel test section composed of five large-scale turbine blades, using the naphthalene sublimation technique. Two cases were tested, with exit Reynolds number of 600,000 and inlet turbulence values of 0.2% and 4%, respectively. The main secondary flow features, consisting of the horseshoe vortex system, the passage vortex, and the corner vortices, are identified and their influence on heat/mass transfer is analyzed. Numerical simulations were carried out to match the conditions of the experiments. Results show that large improvements are obtained with the introduction of the Reθγ transition model. In particular, excellent agreement with the experiments is found, for the whole spanwise extension of the blade, on the pressure surface. On the suction surface, performance is very good in the highly three-dimensional region close to the end wall, but some weaknesses appear in predicting the location of transition in the two-dimensional region. On the end wall surface, the SST model in combination with the transition model produces satisfactory results, greatly improved compared to the standard SST model.

References

References
1.
Blair
,
M. F.
,
1974
, “
An Experimental Study of Heat Transfer and Film Cooling on Large-Scale Turbine Endwalls
,”
ASME J. Heat Transfer
,
96
(
4
), pp.
524
529
.
2.
Graziani
,
R. A.
,
Blair
,
M. F.
,
Taylor
,
J. R.
, and
Mayle
,
R. E.
,
1980
, “
An Experimental Study of Endwall and Airfoil Surface Heat Transfer in a Large Scale Turbine Blade Cascade
,”
ASME J. Eng. Power
,
102
(
2
), pp.
257
267
.
3.
Goldstein
,
R. J.
, and
Spores
,
R. A.
,
1988
, “
Turbulent Transport on the Endwall in the Region Between Adjacent Turbine Blades
,”
ASME J. Heat Transfer
,
110
(4a), pp.
862
869
.
4.
Radomsky
,
R. W.
, and
Thole
,
K. A.
,
2000
, “
High Freestream Turbulence Effects on Endwall Heat Transfer for a Gas Turbine Stator Vane
,”
ASME J. Turbomach.
,
122
(
4
), pp.
699
708
.
5.
Schobeiri
,
M. T.
, and
Nikparto
,
A.
,
2014
, “
A Comparative Numerical Study of Aerodynamics and Heat Transfer on Transitional Flow Around a Highly Loaded Turbine Blade With Flow Separation Using RANS, URANS and LES
,”
ASME
Paper No. GT2014-25828.
6.
Papa
,
M.
,
Goldstein
,
R. J.
, and
Gori
,
F.
,
2007
, “
Numerical Heat Transfer Predictions and Mass/Heat Transfer Measurements in a Linear Turbine Cascade
,”
Appl. Therm. Eng.
,
27
(
4
), pp.
771
778
.
7.
Hermanson
,
K.
,
Kern
,
S.
,
Picker
,
G.
, and
Parneix
,
S.
,
2003
, “
Predictions of External Heat Transfer for Turbine Vanes and Blades With Secondary Flowfields
,”
ASME J. Turbomach.
,
125
(1), pp.
107
113
.
8.
Sveningsson
,
A.
, and
Davidson
,
L.
,
2005
, “
Computations of Flow Field and Heat Transfer in a Stator Vane Passage Using the V2F Turbulence Model
,”
ASME J. Turbomach.
,
127
(
3
), pp.
627
634
.
9.
Durbin
,
P.
,
1991
, “
Near-Wall Turbulence Closure Modelling Without ‘Damping Functions’
,”
Theor. Comput. Fluid Dyn.
,
3
(1), pp.
1
13
.
10.
Luo
,
J.
,
Razinsky
,
E. H.
, and
Moon
,
H. K.
,
2012
, “
Three-Dimensional RANS Prediction of Gas-Side Heat Transfer Coefficients on Turbine Blade and Endwall
,”
ASME J. Turbomach.
,
135
(2), p.
021005
.
11.
Wang
,
C.
,
Luo
,
L.
,
Wang
,
L.
,
Sundén
,
B.
,
Chernoray
,
V.
,
Arroyo
,
C.
, and
Abrahamsson
,
H.
,
2016
, “
Experimental and Numerical Investigation of Outlet Guide Vane and Endwall Heat Transfer With Various Inlet Flow Angles
,”
Int. J. Heat Mass Transfer
,
95
, pp.
355
367
.
12.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.
13.
Menter
,
F. R.
,
Langtry
,
R. B.
,
Likki
,
S. R.
,
Suzen
,
Y. B.
, and
Huang
,
P. G.
,
2006
, “
A Correlation-Based Transition Model Using Local Variables—Part 1: Model Formulation
,”
ASME J. Turbomach.
,
128
(
3
), pp.
413
422
.
14.
Langston
,
L. S.
,
1980
, “
Crossflow in a Turbine Cascade Passage
,”
ASME J. Eng. Gas Turbines Power
,
102
(
4
), pp.
866
874
.
15.
Sharma
,
O. P.
, and
Butler
,
T. L.
,
1987
, “
Predictions of Endwall Losses and Secondary Flows in Axial Flow Turbine Cascades
,”
ASME J. Turbomach.
,
109
(
2
), pp.
229
236
.
16.
Sieverding
,
C. H.
,
1985
, “
Recent Progress in the Understanding of Basic Aspects of Secondary Flows in Turbine Blade Passages
,”
ASME J. Eng. Gas Turbines Power
,
107
(
2
), pp.
248
257
.
17.
Wang
,
H. P.
,
Olson
,
S. J.
,
Goldstein
,
R. J.
, and
Eckert
,
E. R. G.
,
1997
, “
Flow Visualization in a Linear Turbine Cascade of High Performance Turbine Blades
,”
ASME J. Turbomach.
,
119
(
1
), pp.
1
8
.
18.
Goldstein
,
R. J.
, and
Cho
,
H. H.
,
1995
, “
A Review of Mass Transfer Measurements Using Naphthalene Sublimation
,”
Exp. Therm. Fluid Sci.
,
10
(
4
), pp.
416
434
.
19.
Simpson
,
R. L.
, and
Field
,
R. L.
,
1972
, “
A Note on the Turbulent Schmidt and Lewis Numbers in a Boundary Layer
,”
Int. J. Heat Mass Transfer
,
15
(
1
), pp.
177
180
.
20.
Ambrose
,
D.
,
Lawrenson
,
I. J.
, and
Sprake
,
C. H. S.
,
1975
, “
The Vapour Pressure of Naphthalene
,”
J. Chem. Thermodyn.
,
7
(
12
), pp.
1173
1176
.
21.
Abu-Ghannam
,
B. J.
, and
Shaw
,
R.
,
1980
, “
Natural Transition of Boundary Layers—The Effects of Turbulence, Pressure Gradient and Flow History
,”
J. Mech. Eng. Sci.
,
22
(
5
), pp.
213
228
.
22.
Mayle
,
R. E.
,
1991
, “
Role of Laminar-Turbulent Transition in Gas Turbine Engines
,”
ASME J. Turbomach.
,
113
(
4
), pp.
509
537
.
23.
FLUENT,
2003
, “
FLUENT User's Guide
,” Ver. 6.1, FLUENT Inc., Lebanon, NH.
24.
Papa
,
M.
,
2005
, “
Experimental and Numerical Investigation of the Heat/Mass Transfer in the Hub-Endwall Region of a Turbine Cascade
,” Ph.D. thesis, University of Rome ‘Tor Vergata,’ Rome, Italy.
25.
Wang
,
H. P.
,
Goldstein
,
R. J.
, and
Olson
,
S. J.
,
1999
, “
Effect of High Free-Stream Turbulence With Large Length Scale on Blade Heat/Mass Transfer
,”
ASME J. Turbomach.
,
121
(
2
), pp.
217
224
.
26.
Olson
,
S. J.
,
1999
, “
Effect of High Turbulence and Wakes on Mass Transfer From Gas Turbine Blades
,”
Ph.D. thesis
, University of Minnesota, Minneapolis, MN.
27.
Pasinato
,
H. D.
,
Squires
,
K. D.
, and
Roy
,
R. P.
,
2004
, “
Assessment of Reynolds-Averaged Turbulence Models for Prediction of the Flow and Heat Transfer in an Inlet Vane-Endwall Passage
,”
ASME J. Fluids Eng.
,
126
(
3
), pp.
305
315
.
28.
ANSYS
,
2005
, “
CFX User's Manual
,” Ver. 10.0, ANSYS, Canonsburg, PA.
You do not currently have access to this content.