This paper presents an experimental investigation of the rectangular diffusion hole. The effects of rectangular aspect ratio and lateral diffusion angle on film-cooling effectiveness were studied at a low-speed flat-plate experimental facility. The pressure-sensitive paint (PSP) measurement technique was employed to determine the adiabatic effectiveness. The experiments were performed at a density ratio of DR = 1.38 and a mainstream turbulence intensity of Tu = 3.5%. The blowing ratio was varied from M = 0.5 to M = 2.5. Three aspect ratios and three lateral diffusion angles were chosen to match the semicircle and straight-line sidewall shape of the rectangular cross section. A comparative investigation was performed among a typical fan-shaped hole and ten rectangular diffusion holes. The experimental results exhibited diversified film distribution patterns of the rectangular diffusion hole, including single-, bi-, and tripeak patterns. The overall cooling effectiveness increased with the increase of rectangular aspect ratio. The improved magnitude was amplified as blowing ratio increased. The holes with semicircle sidewall were shown to be more suitable for high blowing ratio conditions. The maximum increase of cooling effectiveness was over 70% compared to the fan-shaped hole. The reduction of the lateral diffusion angle affected the film distribution pattern significantly, thereby influencing the cooling effectiveness. To obtain a fixed coverage ratio of film hole row, the rectangular diffusion hole with a larger cross-sectional aspect ratio and a slightly smaller lateral diffusion angle is a preferred scheme.

References

References
1.
Bunker
,
R. S.
,
2005
, “
A Review of Shaped Hole Turbine Film Cooling Technology
,”
ASME J. Heat Transfer
,
127
(
4
), pp.
441
453
.
2.
Goldstein
,
R. J.
,
Eckert
,
E. R. G.
, and
Burggraf
,
F.
,
1974
, “
Effects of Hole Geometry and Density on Three-Dimensional Film Cooling
,”
Int. J. Heat Mass Transfer
,
17
(
5
), pp.
595
607
.
3.
Gritsch
,
M.
,
Schulz
,
A.
, and
Wittig
,
S.
,
1998
, “
Adiabatic Wall Effectiveness Measurements of Film-Cooling Holes With Expanded Exits
,”
ASME J. Turbomach.
,
120
(
3
), pp.
549
556
.
4.
Thole
,
K.
,
Gritsch
,
M.
,
Schulz
,
A.
, and
Wittig
,
S.
,
1998
, “
Flowfield Measurements for Film-Cooling Holes With Expanded Exits
,”
ASME J. Turbomach.
,
120
(
2
), pp.
327
336
.
5.
Baheri
,
S.
,
Tabrizi
,
S. P. A.
, and
Jubran
,
B. A.
,
2008
, “
Film Cooling Effectiveness From Trenched Shaped and Compound Holes
,”
Heat Mass Transfer
,
44
(
8
), pp.
989
998
.
6.
Lu
,
Y. P.
,
Dhungel
,
A.
,
Ekkad
,
S. V.
, and
Bunker
,
R. S.
,
2009
, “
Film Cooling Measurements for Cratered Cylindrical Inclined Holes
,”
ASME J. Turbomach.
,
131
(
1
), p.
011005
.
7.
Rigby
,
L. D.
, and
Heidmann
,
J. D.
,
2008
, “
Improved Film Cooling Effectiveness by Placing a Vortex Generator Downstream of Each Hole
,”
ASME
Paper No. GT2008-51361.
8.
Na
,
S.
, and
Shih
,
T. I.-P.
,
2007
, “
Increasing Adiabatic Film Cooling Effectiveness by Using an Upstream Ramp
,”
ASME J. Heat Transfer
,
129
(
4
), pp.
464
471
.
9.
Ghorab
,
M. G.
, and
Hassan
,
I. G.
,
2010
, “
An Experimental Investigation of a New Hybrid Film Cooling Scheme
,”
Int. J. Heat Mass Transfer
,
53
(
21–22
), pp.
4994
5007
.
10.
Heidmann
,
J. D.
, and
Ekkad
,
S.
,
2008
, “
A Novel Antivortex Turbine Film-Cooling Hole Concept
,”
ASME J. Turbomach.
,
130
(
3
), p.
031020
.
11.
Ely
,
M. J.
, and
Jubran
,
B. A.
,
2009
, “
A Numerical Evaluation on the Effect of Sister Holes on Film Cooling Effectiveness and the Surround Flow Field
,”
Heat Mass Transfer
,
45
(
11
), pp.
1435
1446
.
12.
Kusterer
,
K.
,
Bohn
,
D.
,
Sugimoto
,
T.
, and
Tanaka
,
R.
,
2007
, “
Double-Jet Ejection of Cooling Air for Improved Film Cooling
,”
ASME J. Turbomach.
,
129
(
4
), pp.
809
815
.
13.
Dai
,
P.
, and
Lin
,
F.
,
2011
, “
Numerical Study on Film Cooling Effectiveness From Shaped and Crescent Holes
,”
Heat Mass Transfer
,
47
(
2
), pp.
147
154
.
14.
Heneka
,
C.
,
Schulz
,
A.
,
Bauer
,
H. J.
,
Heselhaus
,
A.
, and
Crawford
,
M. E.
,
2012
, “
Film Cooling Performance of Sharp Edged Diffuser Holes With Lateral Inclination
,”
ASME J. Turbomach.
,
134
(
4
), p.
041015
.
15.
Lee
,
K.-D.
, and
Kim
,
K.-Y.
,
2012
, “
Performance Evaluation of a Novel Film-Cooling Hole
,”
ASME J. Heat Transfer
,
134
(
10
), p.
101702
.
16.
Yang, X., Liu, Z., and Feng, Z.,
2015
, “
Numerical Evaluation of Novel Shaped Holes for Enhancing Film Cooling Performance
,”
ASME J. Heat Transfer
,
137
(
7
), p.
071701
.
17.
Haven
,
B. A.
,
Yamagata
,
D. K.
, and
Kurosaka
,
M.
,
1997
, “
Anti-Kidney Pair of Vortices in Shaped Holes and Their Influence on Film Cooling Effectiveness
,”
ASME
Paper No. 97-GT-45.
18.
Licu
,
D. N.
,
Findlay
,
M. J.
,
Gartshore
,
I. S.
, and
Salcudean
,
M.
,
2000
, “
Transient Heat Transfer Measurements Using a Single Wide-Band Liquid Crystal Test
,”
ASME J. Turbomach.
,
122
(
3
), pp.
546
552
.
19.
Takahashi
,
H.
,
Nuntadusit
,
C.
,
Kimoto
,
H.
,
Ishida
,
H.
,
Ukai
,
T.
, and
Takeishi
,
K.
,
2001
, “
Characteristics of Various Film Cooling Jets Injected in a Conduit
,”
Annals of the New York Academy of Sciences
,
934
, pp.
345
352
.
20.
Cho
,
H. H.
,
Kang
,
S. G.
, and
Rhee
,
D. H.
,
2001
, “
Heat/Mass Transfer Measurement Within a Film Cooling Hole of Square and Rectangular Cross Section
,”
ASME J. Turbomach.
,
123
(
4
), pp.
806
814
.
21.
Gartshore
,
I.
,
Salcudean
,
M.
, and
Hassan
,
I.
,
2001
, “
Film Cooling Injection Hole Geometry: Hole Shape Comparison for Compound Cooling Orientation
,”
AIAA J.
,
39
(
8
), pp.
1493
1499
.
22.
Koc
,
I.
,
2007
, “
Experimental and Numerical Investigation of Film Cooling Effectiveness for Rectangular Injection Holes
,”
Aircr. Eng. Aerosp. Technol.
,
79
(
6
), pp.
621
627
.
23.
Okita
,
Y.
, and
Nishiura
,
M.
,
2007
, “
Film Effectiveness Performance of an Arrowhead-Shaped Film-Cooling Hole Geometry
,”
ASME J. Turbomach.
,
129
(
2
), pp.
331
339
.
24.
Sargison
,
J. E.
,
Guo
,
S. M.
,
Oldfield
,
M. L. G.
,
Lock
,
G. D.
, and
Rawlinson
,
A. J.
,
2002
, “
A Converging Slot-Hole Film-Cooling Geometry—Part 1: Low-Speed Flat-Plate Heat Transfer and Loss
,”
ASME J. Turbomach.
,
124
(
3
), pp.
453
460
.
25.
Bruce-Black
,
J. E.
,
Davidson
,
F. T.
, and
Johns
,
D. R.
,
2011
, “
Practical Slot Configurations for Turbine Film Cooling Applications
,”
ASME J. Turbomach.
,
133
(
3
), p.
031020
.
26.
Shalash
,
K. M.
,
El-Gabry
,
L. A.
, and
El-Azm
,
M. M. A.
,
2014
, “
Investigations of a Novel Discrete Slot Film Cooling Scheme
,”
ASME
Paper No. GT2014-26019.
27.
Bunker
,
R. S.
,
2011
, “
A Study of Mesh-Fed Slot Film Cooling
,”
ASME J. Turbomach.
,
131
(
1
), p.
011022
.
28.
An
,
B. T.
,
Liu
,
J. J.
,
Zhou
,
S. J.
,
Zhang
,
X. D.
, and
Zhang
,
C.
,
2016
, “
Film Cooling Investigation of a Slot-Based Diffusion Hole
,”
ASME
Paper No. GT2016-56175.
29.
Aghasi
,
P.
,
Gutmark
,
E.
, and
Munday
,
D.
,
2016
, “
Dependence of Film Cooling Effectiveness on 3D Printed Cooling Holes
,”
ASME
Paper No. GT2016-56698.
30.
Zhang
,
L. J.
, and
Jaiswal
,
R. S.
,
2001
, “
Turbine Nozzle Endwall Film Cooling Study Using Pressure-Sensitive Paint
,”
ASME J. Turbomach.
,
123
(
4
), pp.
730
738
.
31.
Wright
,
L. M.
,
McClain
,
S. T.
, and
Clemenson
,
M. D.
,
2011
, “
Effect of Density Ratio on Flat Plate Film Cooling With Shaped Holes Using PSP
,”
ASME J. Turbomach.
,
133
(
4
), p.
041011
.
32.
Caciolli
,
G.
,
Facchini
,
B.
,
Picchi
,
A.
, and
Tarchi
,
L.
,
2013
, “
Comparison Between PSP and TLC Steady State Techniques for Adiabatic Effectiveness Measurement on a Multiperforated Plate
,”
Exp. Therm. Fluid Sci.
,
48
, pp.
122
133
.
33.
Johnson
,
B.
,
Tian
,
W.
,
Zhang
,
K.
, and
Hu
,
H.
,
2014
, “
An Experimental Study of Density Ratio Effects on the Film Cooling Injection From Discrete Holes by Using Ply and PSP Techniques
,”
Int. J. Heat Mass Transfer
,
76
, pp.
337
349
.
34.
Rezasoltani
,
M.
,
Lu
,
K.
,
Schobeiri
,
M. T.
, and
Han
,
J. C.
,
2015
, “
A Combined Experimental and Numerical Study of the Turbine Blade Tip Film Cooling Effectiveness Under Rotation Condition
,”
ASME J. Turbomach.
,
137
(
5
), p.
051009
.
35.
Jones
,
T.
,
1999
, “
Theory for the Use of Foreign Gas in Simulating Film Cooling
,”
Int. J. Heat Fluid
,
20
(
1
), pp.
349
354
.
36.
Woodmansee
,
M. A.
, and
Dutton
,
J. C.
,
1998
, “
Treating Temperature-Sensitivity Effects of Pressure-Sensitive Paint Measurements
,”
Exp. Fluids
,
24
(
2
), pp.
163
174
.
37.
Gao
,
Z.
,
Narzary
,
D.
, and
Han
,
J. C.
,
2009
, “
Turbine Blade Platform Film Cooling With Typical Stator-Rotor Purge Flow and Discrete-Hole Film Cooling
,”
ASME J. Turbomach.
,
131
(
4
), p.
041004
.
38.
Coleman
,
H. W.
, and
Steele
,
W. G.
,
1989
,
Experimentation and Uncertainty Analysis for Engineers
,
Wiley
,
New York
, Chaps. 3 and 4.
39.
Natsui
,
G.
,
Little
,
Z.
,
Kapat
,
J. S.
,
Dees
,
J. E.
, and
Laskowski
,
G.
,
2016
, “
A Detailed Uncertainty Analysis of Adiabatic Film Cooling Effectiveness Measurements Using Pressure-Sensitive Paint
,”
ASME J. Turbomach.
,
138
(
8
), p.
081007
.
40.
Petersen
,
D. R.
,
Eckert
,
E. R. G.
, and
Goldstein
,
R. J.
,
1977
, “
Filming Cooling With Large Density Differences Between the Mainstream and Secondary Fluid Measured by Heat-Mass Transfer Analogy
,”
ASME J. Heat Transfer
,
99
(
4
), pp.
620
627
.
41.
Saumweber
,
C.
, and
Schulz
,
A.
,
2012
, “
Effect of Geometry Variations on the Cooling Performance of Fan-Shaped Cooling Holes
,”
ASME J. Turbomach.
,
134
(
6
), p.
061008
.
42.
Lutum
,
E.
, and
Johnson
,
B. V.
,
1999
, “
Influence of the Hole Length-to-Diameter Ratio on Film Cooling With Cylindrical Holes
,”
ASME J. Turbomach.
,
121
(
2
), pp.
209
216
.
You do not currently have access to this content.