Supercritical CO2 (sCO2) cycles are considered as a promising technology for next generation concentrated solar thermal, waste heat recovery, and nuclear applications. Particularly at small scale, where radial inflow turbines can be employed, using sCO2 results in both system advantages and simplifications of the turbine design, leading to improved performance and cost reductions. This paper aims to provide new insight toward the design of radial turbines for operation with sCO2 in the 100–200 kW range. The quasi-one-dimensional mean-line design code topgen is enhanced to explore and map the radial turbine design space. This mapping process over a state space defined by head and flow coefficients allows the selection of an optimum turbine design, while balancing performance and geometrical constraints. By considering three operating points with varying power levels and rotor speeds, the effect of these on feasible design space and performance is explored. This provides new insight toward the key geometric features and operational constraints that limit the design space as well as scaling effects. Finally, review of the loss break-down of the designs elucidates the importance of the respective loss mechanisms. Similarly, it allows the identification of design directions that lead to improved performance. Overall, this work has shown that turbine design with efficiencies in the range of 78–82% is possible in this power range and provides insight into the design space that allows the selection of optimum designs.

References

References
1.
Parida
,
B.
,
Iniyan
,
S.
, and
Goic
,
R.
,
2011
, “
A Review of Solar Photovoltaic Technologies
,”
Renewable Sustainable Energy Rev.
,
15
(
3
), pp.
1625
1636
.
2.
Mekhilef
,
S.
,
Saidur
,
R.
, and
Safari
,
A.
,
2011
, “
A Review on Solar Energy Use in Industries
,”
Renewable Sustainable Energy Rev.
,
15
(
4
), pp.
1777
1790
.
3.
Harries
,
D. N.
,
Paskevicius
,
M.
,
Sheppard
,
D. A.
,
Price
,
T. E. C.
, and
Buckley
,
C. E.
,
2012
, “
Concentrating Solar Thermal Heat Storage Using Metal Hydrides
,”
Proc. IEEE
,
100
(
2
), pp.
539
549
.
4.
Dostal
,
V.
,
2004
, “
A Supercritical Carbon Dioxide Cycle for Next Generation Nuclear Reactors
,” Ph.D. thesis, Massachusetts Institute of Technology, Cambridge, MA.
5.
Feher
,
E. G.
,
1968
, “
The Supercritical Thermodynamic Power Cycle
,”
Energy Convers.
,
8
(
2
), pp.
85
90
.
6.
Angelino
,
G.
,
1967
, “
Perspectives for the Liquid Phase Compression Gas Turbine
,”
ASME J. Eng. Gas Turbines Power
,
89
(
2
), pp.
229
236
.
7.
Angelino
,
G.
,
1968
, “
Carbon Dioxide Condensation Cycles for Power Production
,”
ASME J. Eng. Gas Turbines Power
,
90
(
3
), pp.
287
295
.
8.
Angelino
,
G.
,
1969
, “
Real Gas Effects in Carbon Dioxide Cycles
,”
ASME
Paper No. 69-GT-102.
9.
Zhang
,
H.
,
Zhao
,
H.
,
Deng
,
Q.
, and
Feng
,
Z.
,
2015
, “
Aerothermodynamic Design and Numerical Investigation of Supercritical Carbon Dioxide Turbine
,”
ASME
Paper No. GT2015-42619.
10.
Turchi
,
C. S.
,
Ma
,
Z.
,
Neises
,
T. W.
, and
Wagner
,
M. J.
,
2013
, “
Thermodynamic Study of Advanced Supercritical Carbon Dioxide Power Cycles for Concentrating Solar Power Systems
,”
ASME J. Sol. Energy Eng.
,
135
(
4
), p.
041007
.
11.
Wright
,
S. A.
,
Radel
,
R. F.
,
Vernon
,
M. E.
,
Rochau
,
G. E.
, and
Pickard
,
P. S.
,
2010
, “
Operation and Analysis of a Supercritical CO2 Brayton Cycle
,” Technical Report, Sandia National Laboratories, Report. No. SAND2010-0171.
12.
Kalra
,
C.
,
Sevincer
,
E.
,
Brun
,
K.
,
Hofer
,
D.
, and
Moore
,
J.
,
2014
, “
Development of High Efficiency Hot Gas Turbo-Expander for Optimized CSP Supercritical CO2 Power Block Operation
,”
4th International Symposium-Supercritical CO2 Power Cycles
, Pittsburgh, PA, Sept. 9–10.
13.
Ventura
,
C. A.
,
Jacobs
,
P. A.
,
Rowlands
,
A. S.
,
Petrie-Repar
,
P.
, and
Sauret
,
E.
,
2012
, “
Preliminary Design and Performance Estimation of Radial Inflow Turbines: An Automated Approach
,”
ASME J. Fluids Eng.
,
134
(
3
), p.
031102
.
14.
Moustapha
,
H.
,
Zelesky
,
M. F.
,
Baines
,
N. C.
, and
Japikse
,
D.
,
2003
,
Axial and Radial Turbines
, Vol.
2
,
Concepts NREC
,
White River Junction, VT
.
15.
Jones
,
A. C.
,
1994
, “
Design and Test of a Small, High Pressure Ratio Radial Turbine
,”
ASME
Paper No. 94-GT-135.
16.
Glassman
,
A.
,
1994
, “
Design Analysis of Radial Inflow Turbines
,” Technical Report, National Aeronautics and Space Administration, Lewis Research Center, Cleveland, OH, Report No.
LEW-12684
.
17.
Suhrmann
,
J. F.
,
Peitsch
,
D.
,
Gugau
,
M.
,
Heuer
,
T.
, and
Tomm
,
U.
,
2010
, “
Validation and Development of Loss Models for Small Size Radial Turbines
,”
ASME
Paper No. GT2010-22666.
18.
Aungier
,
R. H. A.
,
2006
,
Turbine Aerodynamics: Axial-Flow and Radial-Inflow Turbine Design and Analysis
,
American Society of Mechanical Engineers
,
New York
.
19.
De Miranda Ventura
,
C. A.
,
2012
, “
Aerodynamic Design and Performance Estimation of Radial Inflow Turbines for Renewable Power Generation Applications
,” Ph.D. thesis, The University of Queensland, Queensland, Australia.
20.
Lemmon
,
E. W.
,
Huber
,
M. L.
, and
McLinden
,
M. O.
,
2012
, “
NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties (REFPROP)
,”
National Institute of Standards and Technology
,
Gaithersburg, MD
.
21.
Span
,
R.
, and
Wagner
,
W.
,
1996
, “
A New Equation of State for Carbon Dioxide Covering the Fluid Region From the Triple-Point Temperature to 1100 K at Pressures Up to 800 MPA
,”
J. Phys. Chem. Ref. Data
,
25
(
6
), pp.
1509
1596
.
22.
Hiett
,
G. F.
, and
Johnston
,
I. H.
,
1963
, “
Paper 7: Experiments Concerning the Aerodynamic Performance of Inward Flow Radial Turbines
,” Institution of Mechanical Engineers, Conference Proceedings, Vol.
178
,
SAGE Publications
,
London
, pp.
28
42
.
23.
Marscher
,
W.
,
1992
, “
Structural Analysis: Stresses Due to Centrifugal, Pressure and Thermal Loads in Radial Turbines
,” VKI Lecture Series, Radial Turbines, von Kármán Institute for Fluid Dynamics, Sint-Genesius-Rode, Belgium, Technical Report No. 93.
24.
Blevins
,
R. D.
, and
Plunkett
,
R.
,
1980
, “
Formulas for Natural Frequency and Mode Shape
,”
ASME J. Appl. Mech.
,
47
(
2
), pp.
461
462
.
25.
Korpela
,
S. A.
,
2012
,
Principles of Turbomachinery
,
Wiley
,
Hoboken, NJ
.
26.
Woolley
,
N.
, and
Hatton
,
A.
,
1973
, “
Viscous Flow in Radial Turbomachine Blade Passages
,”
Conference on Heat and Fluid Flow in Steam and Gas Turbine Plant
, Coventry, UK, Apr. 3–5, pp.
175
181
.
27.
Rohlik
,
H. E.
,
1968
, “
Analytical Determination of Radial Inflow Turbine Design Geometry for Maximum Efficiency
,” National Aeronautics and Space Administration, Lewis Research Center; Cleveland, OH, Report No.
NASA-TN-D-4384
.
28.
Somaya
,
K.
,
Kishino
,
T.
,
Miyatake
,
M.
, and
Yoshimoto
,
S.
,
2014
, “
Static Characteristics of Small Aerodynamic Foil Thrust Bearings Operated Up to 350,000 r/min
,”
Proc. Inst. Mech. Eng. Part J
,
228
(
9
), pp.
928
936
.
29.
Swann
,
P.
,
2015
Bearing Selection Calculation
,” Queensland Geothermal Energy Centre of Excellence, The University of Queensland, Queensland, Australia, Report No. QGECE 23-01-CL-06.
30.
Shepherd
,
D. G.
,
1956
,
Principles of Turbomachinery
,
Macmillan
,
New York
.
31.
Balje
,
O. E.
,
1981
,
Turbomachines: A Guide to Design, Selection, and Theory
,
Wiley
,
Toronto, Canada
.
32.
Futral
,
S. M.
, Jr.
, and
Holeski
,
D. E.
,
1969
, “
Experimental Results of Varying the Blade-Shroud Clearance in a 6.02-Inch Radial-Inflow Turbine
,” National Aeronautics and Space Administration, Lewis Research Center; Cleveland, OH, Report No.
NASA-TN-D-5513
.
33.
Glassman
,
A. J.
,
1976
, “
Computer Program for Design Analysis of Radial-Inflow Turbines
,” National Aeronautics and Space Administration, Lewis Research Center; Cleveland, OH, Report No.
NASA-TN-D-8164
.
34.
Whitfield
,
A.
, and
Wallace
,
F.
,
1973
, “
Study of Incidence Loss Models in Radial and Mixed-Flow Turbomachinery
,”
Conference on Heat and Fluid Flow in Steam and Gas Turbine Plant
, Coventry, UK, Apr. 3–5, pp.
122
128
.
35.
Daily
,
J. W.
, and
Nece
,
R. E.
,
1960
, “
Chamber Dimension Effects on Induced Flow and Frictional Resistance of Enclosed Rotating Disks
,”
ASME J. Basic Eng.
,
82
(
1
), pp.
217
230
.
36.
Glassman
,
A. J.
,
1995
, “
Enhanced Analysis and Users Manual for Radial-Inflow Turbine Conceptual Design Code RTD
,” National Aeronautics and Space Administration, Lewis Research Center; Cleveland, OH, Report No.
NASA-CR-195454
.
37.
Ghosh
,
S. K.
,
Sahoo
,
R.
, and
Sarangi
,
S. K.
,
2011
, “
Mathematical Analysis for Off-Design Performance of Cryogenic Turboexpander
,”
ASME J. Fluids Eng.
,
133
(
3
), p.
031001
.
38.
Futral
,
S. M.
, and
Wasserbauer
,
C. A.
,
1965
, “
Off-Design Performance Prediction With Experimental Verification for a Radial-Inflow Turbine
,” National Aeronautics and Space Administration, Washington, DC, Technical Report No. NASA-TN-D-2621.
You do not currently have access to this content.