At the large scale turbine rig (LSTR) at Technische Universität Darmstadt, Darmstadt, Germany, the aerothermal interaction of combustor exit flow conditions on the subsequent turbine stage is examined. The rig resembles a high pressure turbine and is scaled to low Mach numbers. A baseline configuration with an axial inflow and a swirling inflow representative for a lean combustor is modeled by swirl generators, whose clocking position toward the nozzle guide vane (NGV) leading edge can be varied. A staggered double-row of cylindrical film cooling holes on the endwall is examined. The effect of swirling inflow on heat transfer and film cooling effectiveness is studied, while the coolant mass flux rate is varied. Nusselt numbers are calculated using infrared thermography and the auxiliary wall method. Boundary layer, turbulence, and five-hole probe measurements as well as numerical simulations complement the examination. The results for swirling inflow show a decrease of film cooling effectiveness of up to 35% and an increase of Nusselt numbers of 10–20% in comparison to the baseline case for low coolant mass flux rates. For higher coolant injection, the heat transfer is on a similar level as the baseline. The differences vary depending on the clocking position. The turbulence intensity is increased to 30% for swirling inflow.

References

References
1.
Turrell
,
M. D.
,
Stopford
,
P. J.
,
Syed
,
K. J.
, and
Buchanan
,
E.
,
2004
, “
CFD Simulation of the Flow Within and Downstream of a High-Swirl Lean Premixed Gas Turbine Combustor
,”
ASME
Paper No. GT2004-53112.
2.
Werschnik
,
H.
,
Krichbaum
,
A.
,
Schiffer
,
H.-P.
, and
Lehmann
,
K.
,
2015
, “
The Influence of Combustor Swirl on Turbine Stator Endwall Heat Transfer and Film Cooling Effectiveness in a 1.5-Stage Axial Turbine
,” ISABE 2015, International Society of Air Breathing Engines, ed., Paper No. ISABE2015-20184.
3.
Schmid
,
G.
,
Krichbaum
,
A.
,
Werschnik
,
H.
, and
Schiffer
,
H.-P.
, “
The Impact of Realistic Inlet Swirl in a 1½ Stage Axial Turbine
,”
ASME
Paper No. GT2014-26716.
4.
Qureshi
,
I.
,
Smith
,
A. D.
, and
Povey
,
T.
,
2013
, “
Hp Vane Aerodynamics and Heat Transfer in the Presence of Aggressive Inlet Swirl
,”
ASME J. Turbomach.
,
135
(
2
), p.
021040
.
5.
Luque
,
S.
,
Kanjirakkad
,
V.
,
Aslanidou
,
I.
,
Lubbock
,
R.
,
Rosic
,
B.
, and
Uchida
,
S.
,
2015
, “
A New Experimental Facility to Investigate Combustor–Turbine Interactions in Gas Turbines With Multiple Can Combustors
,”
ASME J. Eng. Gas Turbines Power
,
137
(
5
), p.
051503
.
6.
Jacobi
,
S.
,
Mazzoni
,
C.
,
Chana
,
K.
, and
Rosic
,
B.
,
2016
, “
Investigation of Unsteady Flow Phenomena in First Vane Caused by Combustor Flow With Swirl
,”
ASME
Paper No. GT2016-57358.
7.
Rosic
,
B.
,
Denton
,
J. D.
,
Horlock
,
J. H.
, and
Uchida
,
S.
,
2012
, “
Integrated Combustor and Vane Concept in Gas Turbines
,”
ASME J. Turbomach.
,
134
(
3
), p.
031005
.
8.
Insinna
,
M.
,
Salvadori
,
S.
, and
Martelli
,
F.
,
2014
, “
Simulation of Combustor/NGV Interaction Using Coupled Rans Solvers: Validation and Application to a Realistic Test Case
,”
ASME
Paper No. GT2014-25433.
9.
Vagnoli
,
S.
, and
Verstraete
,
T.
,
2015
, “
Numerical Study of the Combustor—Turbine Interaction Using Coupled Unsteady Solvers
,” ISABE 2015, International Society of Air Breathing Engines, ed., Paper No. ISABE2015-20179.
10.
Yin
,
H.
,
Liu
,
S.
,
Feng
,
Y.
,
Li
,
M.
,
Ren
,
J.
, and
Jiang
,
H.
,
2015
, “
Experimental Test Rig for Combustor-Turbine Interaction Research and Test Results Analysis
,”
ASME
Paper No. GT2015-42209.
11.
Koupper
,
C.
,
Gicquel
,
L.
,
Duchaine
,
F.
,
Bacci
,
T.
,
Facchini
,
B.
,
Picchi
,
A.
,
Tarchi
,
L.
, and
Bonneau
,
G.
,
2016
, “
Experimental and Numerical Calculation of Turbulent Timescales at the Exit of an Engine Representative Combustor Simulator
,”
ASME J. Eng. Gas Turbines Power
,
138
(
2
), p.
021503
.
12.
Cha
,
C. M.
,
Hong
,
S.
,
Ireland
,
P. T.
,
Denman
,
P.
, and
Savarianandam
,
V.
,
2012
, “
Experimental and Numerical Investigation of Combustor-Turbine Interaction Using an Isothermal, Nonreacting Tracer
,”
ASME J. Eng. Gas Turbines Power
,
134
(
8
), p.
081501
.
13.
Friedrichs
,
S.
,
1997
, “
Aerodynamic Aspects of Endwall Film-Cooling
,”
ASME J. Turbomach.
,
119
(
4
), pp.
786
793
.
14.
Han
,
J.-C.
,
Datta
,
S.
, and
Ekkad
,
S.
,
2013
,
Gas Turbine Heat Transfer and Cooling Technology
,
2nd ed.
,
CRC Press/Taylor & Francis
,
Boca Raton, FL
.
15.
Thole
,
K. A.
,
Sinha
,
A. K.
,
Bogard
,
D. G.
, and
Crawford
,
M. E.
,
1992
, “
Mean Temperature Measurements of Jets With a Crossflow for Gas Turbine Film Cooling Application: Isromac-3
,”
3rd International Symposium on Transport Phenomena and Dynamics of Rotating Machinery
(
ISROMAC-3
), Honolulu, HI, Apr. 1–4, 1990, Paper No. A93-54626 24-34.
16.
Baldauf
,
S.
,
Scheurlen
,
M.
,
Schulz
,
A.
, and
Wittig
,
S.
,
2002
, “
Correlation of Film-Cooling Effectiveness From Thermographic Measurements at Enginelike Conditions
,”
ASME J. Turbomach.
,
124
(
4
), pp.
686
698
.
17.
Benton
,
R.
,
Rabe
,
G.
,
Schiffer
,
H.-P.
, and
Berg
,
P.
,
2005
, “
Ballistic Cooling of Turbine Nozzle Guide Vane Platforms
,”
International Society of Air Breathing Engines (Hg.)
, Paper No. ISABE 2005-1113.
18.
Thomas
,
M.
,
2014
, “
Optimization of Endwall Film-Cooling in Axial Turbines
,”
Ph.D., dissertation
, University of Oxford, Oxford, UK.
19.
Colban
,
W. F.
,
Lethander
,
A. T.
,
Thole
,
K. A.
, and
Zess
,
G.
,
2003
, “
Combustor Turbine Interface Studies—Part 2: Flow and Thermal Field Measurements
,”
ASME J. Turbomach.
,
125
(
2
), pp.
203
209
.
20.
Colban
,
W. F.
,
Thole
,
K. A.
, and
Zess
,
G.
,
2003
, “
Combustor Turbine Interface Studies—Part 1: Endwall Effectiveness Measurements
,”
ASME J. Turbomach.
,
125
(
2
), pp.
193
202
.
21.
Cresci
,
I.
,
Ireland
,
P. T.
,
Bacic
,
M.
,
Tibbott
,
I.
, and
Rawlinson
,
A.
,
2015
, “
Velocity and Turbulence Intensity Profiles Downstream of a Long Reach Endwall Double Row of Film Cooling Holes in a Gas Turbine Combustor Representative Environment
,”
ASME
Paper No. GT2015-42307.
22.
Gritsch
,
M.
,
Baldauf
,
S.
,
Martiny
,
M.
,
Schulz
,
A.
, and
Wittig
,
S.
,
1999
, “
The Superposition Approach to Local Heat Transfer Coefficients in High Density Ratio Film Cooling Flows
,”
ASME
Paper No. 99-GT-168.
23.
Goldstein
,
R. J.
, and
Spores
,
R. A.
,
1988
, “
Turbulent Transport on the Endwall in the Region Between Adjacent Turbine Blades
,”
ASME J. Heat Transfer
,
110
(
4a
), p.
862
.
24.
Astarita
,
T.
, and
Carlomagno
,
G. M.
,
2013
,
Infrared Thermography for Thermo-Fluid-Dynamics
,
Springer
,
Berlin
.
25.
Laveau
,
B.
,
Abhari
,
R. S.
,
Crawford
,
M. E.
, and
Lutum
,
E.
,
2015
, “
High Resolution Heat Transfer Measurements on the Stator Endwall of an Axial Turbine
,”
ASME J. Turbomach.
,
137
(
4
), p.
041005
.
26.
Xue
,
S.
,
Roy
,
A.
,
Ng
,
W. F.
, and
Ekkad
,
S. V.
,
2015
, “
A Novel Transient Technique to Determine Recovery Temperature, Heat Transfer Coefficient, and Film Cooling Effectiveness Simultaneously in a Transonic Turbine Cascade
,”
ASME J. Therm. Sci. Eng. Appl.
,
7
(
1
), p.
011016
.
27.
Nicklas
,
M.
,
2001
, “
Film-Cooled Turbine Endwall in a Transonic Flow Field—Part II: Heat Transfer and Film-Cooling Effectiveness
,”
ASME J. Turbomach.
,
123
(
4
), pp.
720
729
.
28.
Werschnik
,
H.
,
Ostrowski
,
T.
,
Hilgert
,
J.
,
Schneider
,
M.
, and
Schiffer
,
H.-P.
,
2015
, “
Infrared Thermography to Study Endwall Cooling and Heat Transfer in Turbine Stator Vane Passages Using the Auxiliary Wall Method and Comparison to Numerical Simulations
,”
J. Quant. Infrared Thermogr.
,
12
(
2
), pp.
219
236
.
29.
Krichbaum
,
A.
,
Werschnik
,
H.
,
Wilhelm
,
M.
,
Schiffer
,
H.-P.
, and
Lehmann
,
K.
, “
A Large Scale Turbine Test Rig for the Investigation of High Pressure Turbine Aerodynamics and Heat Transfer With Variable Inflow Conditions
,”
ASME
Paper No. GT2015-43261.
30.
Klinger
,
H.
,
Lazik
,
W.
, and
Wunderlich
,
T.
,
2008
, “
The Engine 3E Core Engine
,”
ASME
Paper No. GT2008-50679.
31.
Lohrengel
,
J.
, and
Todtenhaupt
,
R.
,
1996
, “
Wärmeleitfähigkeit, Gesamtemissionsgrad und Spektrale Emissionsgrade der Beschichtung Nextel-Velvet-Coating 811 (RAL 900 15 Tiefschwarz Matt): (Engl.: Thermal Conductivity, Total Emissivity and Spectral Emissivity of the Coating Nextel-Velvet-Coating 811)
,”
PTB-Mitteilungen
,
106
, pp.
259
265
.
32.
Steinhausen
,
C.
,
2015
, “
Definition and Application of the Data Analysis Procedure for Heat Transfer and Film Cooling Effectiveness Measurements at the Large Scale Turbine Rig (LSTR)
,” Master thesis, TU Darmstadt, Darmstadt, Germany.
33.
Schrewe
,
S.
,
2014
, “
Experimental Investigation of the Interaction Between Purge and Main Annulus Flow Upstream of a Nozzle Guide Vane in a Low Pressure Turbine
,” Dr.-Ing. dissertation, Technische Universität Darmstadt, Darmstadt, Germany.
34.
Nitsche
,
W.
, and
Brunn
,
A.
,
2006
,
Strömungsmesstechnik 2
, Aktualisierte und Bearbeitete Auflage ed.,
Springer-Verlag
,
Berlin
.
35.
Bruun
,
H. H.
,
2002
,
Hot-Wire Anemometry: Principles and Signal Analysis
,
Oxford University Press
,
Oxford, UK
.
36.
Ertel
,
G.
,
2006
, “
Development of a Hot-Wire-Anemometry Calibration Procedure at Realistic Turbomachinery Conditions at High Subsonic Mach Numbers: Entwicklung Eines Hitzdrahtkalibrierverfahrens Unter Realen Turbomaschinenbedingungen bei Hohen Unterschallmachzahlen
,” Diploma thesis, Technische Universität Berlin, Berlin.
37.
Bacci
,
T.
,
Facchini
,
B.
,
Picchi
,
A.
,
Tarchi
,
L.
,
Koupper
,
C.
, and
Champion
,
J.-L.
,
2015
, “
Turbulence Field Measurements at the Exit of a Combustor Simulator Dedicated to Hot Streaks Generation
,”
ASME
Paper No. GT2015-42218.
38.
Bacci
,
T.
,
Caciolli
,
G.
,
Facchini
,
B.
,
Tarchi
,
L.
,
Koupper
,
C.
, and
Champion
,
J.-L.
,
2015
, “
Flowfield and Temperature Profiles Measurements on a Combustor Simulator Dedicated to Hot Streaks Generation
,”
ASME
Paper No. GT2015-42217.
39.
Dückershoff
,
R.
,
2004
, “
Filmkühlung in Gebieten mit Verzögerter Hauptströmung und in Bereichen Lokaler Strömungsablösung: (Engl.: Film Cooling in Areas of Decelerated Main Flow and in Areas of Local Separation)
,” Dr.-Ing. dissertation, BTU Cottbus, Aachen, Germany.
40.
Klapdor
,
E. V.
,
2011
, “
Simulation of Combustor-Turbine Interaction in a Jet Engine
,”
Dr.-Ing. dissertation
, Technische Universität Darmstadt, Darmstadt, Germany.
41.
Joint Committee for Guides in Metrology
,
2008
, “
Evaluation of Measurement Data—Guide to the Expression of Uncertainty in Measurement
,” Technical Report, Report No. 1.
You do not currently have access to this content.