An empirical riblet model for manufactured V-shaped and trapezoidal riblets which is suitable for turbomachinery application is presented. The implementation of the riblet effect employs a correlation-based correction for the damping of the specific dissipation rate ω in the vicinity of the wall which has been previously presented by other researchers. In the current paper, the correlations are extended into the drag-increasing regime and are extended to account for the effect of misalignment of the riblets relative to the flow and for the effect of adverse pressure gradients. In order to account for the latter in modern, massive parallel Reynolds-averaged Navier–Stokes (RANS) codes, a local Clauser parameter has been newly derived. The model is implemented in a three-dimensional (3D) turbomachinery design code and validated with flat plate measurement data and a NACA6510 compressor cascade. The predictions of the experimental values are in very good agreement with the experimental data, showing the capability of the model for designing riblet structured turbomachinery blading.

References

References
1.
Gümmer
,
V.
,
2005
, “
Pfeilung und V-Stellung zur Beeinflussung der Dreidimensionalen Strömung in Leiträdern Transsonischer Axialverdichter
,” Fortschritt-Berichte, Vol.
7
,
VDI-Verlag
,
Düsseldorf
, Germany,
7
(384).
2.
García-Mayoral
,
R.
, and
Jiménez
,
J.
,
2011
, “
Drag Reduction by Riblets
,”
Philos. Trans. R. Soc. A
,
369
(
1940
), pp.
1412
1427
.
3.
Lee
,
S.-H.
, and
Lee
,
D.-H.
,
2001
, “
Flow Field Analysis of a Turbulent Boundary Layer Over a Riblet Surface
,”
Exp. Fluids
,
30
(
2
), pp.
153
166
.
4.
Bechert
,
D.
, and
Bartenwerfer
,
M.
,
1989
, “
The Viscous Flow on Surfaces With Longitudinal Ribs
,”
J. Fluid Mech.
,
206
, pp.
105
129
.
5.
Bechert
,
D.
,
Bruse
,
M.
,
van der Hoeven
,
J.
, and
Hoppe
,
G.
,
1997
, “
Experiments on Drag-Reducing Surfaces and Their Optimization With an Adjustable Geometry
,”
J. Fluid Mech.
,
338
, pp.
59
87
.
6.
Bruse
,
M.
,
Bechert
,
D.
,
van der Hoeven
,
J.
,
Hage
,
W.
, and
Hoppe
,
G.
,
1993
, “
Experiments With Conventional and With Novel Adjustable Drag-Reducing Surfaces
,”
Near-Wall Turbulent Flows
,
R. M. C.
So
,
C. G.
Speziale
, and
B. E.
Launder
, eds.,
Elsevier
,
Amsterdam, The Netherlands
, pp.
719
738
.
7.
Sawyer
,
W.
, and
Winter
,
K.
,
1987
, “
An Investigation of the Effect on Turbulent Skin Friction of Surfaces With Streamwise Grooves
,”
International Conference on Turbulent Drag Reduction by Passive Means
, London, Sept. 15–17, pp.
330A
362
.
8.
Hage
,
W.
,
2004
, “
Zur Widerstandsverminderung von Dreidimensionalen Riblet-Strukturen und Anderen Oberflächen
,” Ph.D. thesis, TU Berlin, Berlin.
9.
Choi
,
K.-S.
,
1990
, “
Drag Reduction Test of Riblets Using Are's High Speed Buoyancy Propelled Vehicle—Moby-d
,”
Aeron. J.
,
94
(
933
), pp.
79
85
.
10.
Squire
,
L.
, and
Savill
,
A.
,
1987
, “
Some Experiences of Riblets at Transonic Speeds
,”
RAeS International Conference on Turbulent Drag Reduction by Passive Means
, London, Sept. 15–17, pp.
392
407
.
11.
McLean
,
J.
,
George-Falvy
,
D.
, and
Sullivan
,
P.
,
1987
, “
Flight Test of Turbulent Skin-Friction Reduction by Riblets
,”
RAeS
International Conference on Turbulent Drag Reduction by Passive Means
, London, Sept. 15–17, pp.
408
424
.
12.
Gaudet
,
L.
,
1989
, “
Properties of Riblets at Supersonic Speed
,”
Appl. Sci. Res.
,
46
(
3
), pp.
245
254
.
13.
Zuniga
,
F.
,
Anderson
,
B.
, and
Bertelrud
,
A.
,
1992
, “
Flight Test Results of Riblets at Supersonic Speeds
,” NASA Technical Memorandum 4387.
14.
Trueong
,
T.
, and
Pulvin
,
P.
,
1989
, “
Influence of Wall Riblets on Diffuser Flow
,”
Appl. Sci. Res.
,
46
(
3
), pp.
217
227
.
15.
Nieuwstadt
,
F.
,
Wolthers
,
W.
,
Leijdens
,
H.
,
Krishna Prasad
,
K.
, and
Schwarz-van Manen
,
A.
,
1993
, “
The Reduction of Skin Friction by Riblets Under the Influence of an Adverse Pressure Gradient
,”
Exp. Fluids
,
15
(
1
), pp.
17
26
.
16.
Debisshop
,
J.
, and
Nieuwstadt
,
F.
,
1996
, “
Turbulent Boundary Layer in an Adverse Pressure Gradient: Effectiveness of Riblets
,”
AIAA J.
,
34
(
5
), pp.
932
937
.
17.
Indinger
,
T.
,
2005
, “
Einfluss Eines Positiven Druckgradienten auf Turbulente Grenzschichten an Glatten und Gerillten Oberflächen
,” Ph.D. thesis, TU München, München, Germany.
18.
Keck
,
M.
,
2008
, “
Experimentelle Untersuchungen zur Wirksamkeit von Riblets in Verzögerten Grenzschichten
,” Ph.D. thesis, TU Dresden, Dresden, Germany.
19.
Klumpp
,
S.
,
Guldner
,
T.
,
Meinke
,
M.
, and
Schröder
,
W.
,
2010
, “
Riblets in a Turbulent Adverse-Pressure Gradient Boundary Layer
,”
5th Flow Control Conference
,
AIAA
Paper No. AIAA 2010-4706.
20.
Gatti
,
D.
, and
Quadrio
,
M.
,
2016
, “
Reynolds-Number Dependence of Turbulent Skin-Friction Reduction Induced by Spanwise Forcing
,”
J. Fluid Mech.
,
802
, pp.
553
582
.
21.
Choi
,
K.-S.
,
1989
, “
Near-Wall Structure of a Turbulent Boundary Layer With Riblets
,”
J. Fluid Mech.
,
208
, pp.
417
458
.
22.
Benhalilou
,
M.
, and
Kasagi
,
N.
,
1995
, “
Numerical Prediction of Turbulent Flow Over a Riblet Surface With Nonlinear k–ϵ Model
,”
10th Symposium on Turbulent Shear Flows
, University Park, PA, Aug. 14–16, pp.
14–13
14–18
.
23.
Baron
,
A.
,
Quadrio
,
M.
, and
Vigevano
,
L.
,
1993
, “
On the Boundary Layer/Riblet Interaction Mechanisms and the Prediction of Turbulent Drag Reduction
,”
Int. J. Heat Fluid Flow
,
14
(
4
), pp.
324
332
.
24.
Walsh
,
M.
, and
Lindemann
,
A.
,
1984
, “
Optimization and Application of Riblets for Turbulent Drag Reduction
,”
AIAA J.
,
84
, p.
0347
.
25.
Hage
,
W.
,
Meyer
,
R.
, and
Knobloch
,
K.
,
2008
, “
Zur Vorhersage von Widerstandseigenschaften von Riblet-Oberflächen
,” DLR-Interner Bericht, Monograph No. DLR-IB-92517-08/B3.
26.
Lietmeyer
,
C.
,
Chahine
,
C.
, and
Seume
,
J.
,
2011
, “
Numerical Calculation of the Riblet-Effect on Compressor Blades and Validation With Experimental Results
,” International Gas Turbine Congress, Osaka, Japan, Nov. 13–18, Paper No. IGTC2011-0106.
27.
Lietmeyer
,
C.
,
2013
, “
Berechnungsmodell zur Widerstandsbeeinflussung Nicht-Idealer Riblets auf Verdichterschaufeln
,” Ph.D. thesis, Berichte aus dem Institut für Turbomaschinen und Fluid-Dynamik, Leibniz Universität Hannover, Hannover, Germany.
28.
Drela
,
M.
, and
Giles
,
M.
,
1997
, “
Viscous-Inviscid Analysis of Transonic and Low Reynolds Number Airfoils
,”
AIAA J.
,
25
(
7
), pp.
1347
1355
.
29.
Lietmeyer
,
C.
,
Denkena
,
B.
,
Krawczuk
,
T.
,
Kling
,
R.
,
Overmeyer
,
L.
,
Wojakowsky
,
B.
,
Scheuer
,
R.
,
Vynnyk
,
T.
, and
Seume
,
J.
,
2013
, “
Recent Advances in Manufacturing of Riblets on Compressor Blades and Their Aerodynamic Impact
,”
ASME J. Turbomach.
,
135
(
4
), p.
041008
.
30.
Oehlert
,
K.
, and
Seume
,
J.
,
2006
, “
Exploratory Experiments on Machined Riblets on Compressor Blades
,”
2nd Joint U.S. European Fluids Engineering Division Summer Meeting
,
ASME
Paper No. FEDSM2006-98093.
31.
Oehlert
,
K.
,
Seume
,
J.
,
Siegel
,
F.
,
Ostendorf
,
A.
,
Wang
,
B.
,
Denkena
,
B.
,
Vynnyk
,
T.
,
Reithmeier
,
E.
,
Hage
,
W.
,
Knobloch
,
K.
, and
Meyer
,
R.
,
2007
, “
Exploratory Experiments on Machined Riblets for 2-D Compressor Blades
,”
ASME
Paper No. IMECE2007-43457.
32.
Wilcox
,
D. C.
,
1988
, “
Reassessment of the Scale-Determining Equation for Advanced Turbulence Models
,”
AIAA J.
,
26
(
11
), pp.
1299
1309
.
33.
Aupoix
,
B.
,
Pailhas
,
G.
, and
Houdeville
,
R.
,
2010
, “
Towards a General Strategy to Model Riblet Effects
,”
AIAA J.
,
50
(
3
), pp.
708
716
.
34.
Aupoix
,
B.
,
Pailhas
,
G.
, and
Houdeville
,
R.
,
2012
, “
Toward a General Strategy to Model Riblet Effects
,”
AIAA J.
,
50
(
3
), pp.
708
716
.
35.
Mele
,
B.
, and
Tognaccini
,
R.
,
2012
, “
Numerical Simulation of Riblets on Airfoils and Wings
,”
50th AIAA Aerospace Sciences Meeting
,
AIAA
Paper No. AIAA2012-0861.
36.
Mele
,
B.
, and
Tognaccini
,
R.
,
2013
, “
A Unified Model for Riblet Simulation in Complex Flow
,”
21st Congresso
AIMETA
, Associazione Italiana di Meccanica Teorica e Applicata, Turin, Italy, Sept. 17–20, p.
47
.
37.
Mele
,
B.
,
Tognaccini
,
R.
, and
Catalano
,
P.
,
2016
, “
Performance Assessment of a Transonic Wing-Body Configuration
,”
J. Aircr.
,
53
(
1
), pp.
129
140
.
38.
Okabayashi
,
K.
,
Matsue
,
T.
,
Asai
,
M.
, and
Naito
,
H.
,
2014
, “
RANS Modeling for Flows on Riblets Based on Experimental Data
,”
29th Congress of the International Council of the Aeronautical Sciences
(
ICAS
), St. Petersburg, Russia, Sept. 7–12, pp.
1376
1384
.
39.
Saffman
,
P.
,
1970
, “
A Model for Inhomogeneous Turbulent Flow
,”
Proc. R. Soc. London
,
A317
(1530), pp.
417
433
.
40.
Walsh
,
M.
,
1982
, “
Turbulent Boundary Layer Drag Reduction Using Riblets
,”
20th AIAA Aerospace Sciences Meeting
,
AIAA
Paper No. AIAA 82-0169.
41.
Walsh
,
M.
,
1990
, “
Riblets
,”
Viscous Flow Drag Reduction
, Vol.
123
,
G. R.
Hough
, ed.,
AIAA
,
New York
, pp.
168
184
.
42.
Luchini
,
P.
,
Manzo
,
F.
, and
Pozzi
,
A.
,
1991
, “
Resistance of Grooved Surface to Parallel Flow and Cross-Flow
,”
J. Fluid Mech.
,
228
, pp.
87
109
.
43.
Fernholz
,
H.-H.
, and
Finley
,
P.
,
1996
, “
The Incompressible Zero-Pressure Gradient Turbulent Boundary Layer: An Assessment of the Data
,”
Prog. Aerosp. Sci.
,
32
(
4
), pp.
245
311
.
44.
Gaudet
,
L.
,
1987
, “
An Assessment of the Drag Reduction Properties of Riblets and the Penalties of Off-Design Conditions
,”
RAE Technical Memorandum
, Memorandum No. Aero 2113.
45.
Langtry
,
R. B.
, and
Menter
,
F. R.
,
2009
, “
Correlation-Based Transition Modeling for Unstructured Parallelized Computational Fluid Dynamics Codes
,”
AIAA J.
,
47
(
12
), pp.
2894
2906
.
46.
Kügeler
,
E.
,
Nürnberger
,
D.
,
Weber
,
E.
, and
Engel
,
K.
,
2008
, “
Influence of Blade Fillets on the Performance of a 15 Stage Gas Turbine Compressor
,”
ASME
Paper No. GT2008-50748.
47.
Fiala
,
A.
, and
Kügeler
,
E.
,
2011
, “
Roughness Modeling for Turbomachinery
,”
ASME
Paper No. GT2011-45424.
48.
Herbst
,
F.
,
Fiala
,
A.
, and
Seume
,
J. R.
,
2014
, “
Modeling Vortex Generating Jet-Induced Transition in Low-Pressure Turbines
,”
ASME J. Turbomach.
,
136
(
7
), p. 071005
49.
Bode
,
C.
,
Aufderheide
,
T.
,
Kožulović
,
D.
, and
Friedrichs
,
J.
,
2014
, “
The Effects of Turbulence Length Scale on Turbulence and Transition Prediction in Turbomachinery Flows
,”
ASME
Paper No. GT2014-27026.
50.
Röber
,
T.
,
Kožulović
,
D.
,
Kügeler
,
E.
, and
Nürnberger
,
D.
,
2006
, “
Appropriate Turbulence Modeling for Turbomachinery Using a Two-Equation Turbulence Model
,”
New Results in Numerical and Experimental Fluid Mechanics
, Vol.
92
, pp.
446
454
.
51.
Lietmeyer
,
C.
,
Oehlert
,
K.
, and
Seume
,
J.
,
2013
, “
Optimal Application of Riblets on Compressor Blades and Their Contamination Behavior
,”
ASME J. Turbomach.
,
135
(
1
), p. 011036.
52.
Wison
,
D.
, and
Korakianitis
,
T.
,
1998
,
The Design of High-Efficiency Turbomachinery and Gas Turbines
,
2nd ed.
,
Prentice-Hall
,
Upper Saddle River, NJ
.
You do not currently have access to this content.