Time-accurate transient blade row (TBR) simulation approaches are required when there is a close flow coupling between the blade rows, and for fundamentally transient flow phenomena such as aeromechanical analysis. Transient blade row simulations can be computationally impractical when all of the blade passages must be modeled to account for the unequal pitch between the blade rows. In order to reduce the computational cost, time-accurate pitch-change methods are utilized so that only a sector of the turbomachine is modeled. The extension of the time-transformation (TT) pitch-change method to multistage machines has recently shown good promise in predicting both aerodynamic performance and resolving dominant blade passing frequencies for a subsonic compressor, while keeping the computational cost affordable. In this work, a modified 1.5 stage Purdue transonic compressor is examined. The goal is to assess the ability of the multistage time-transformation method to accurately predict the aerodynamic performance and transient flow details in the presence of transonic blade row interactions. The results from the multistage time-transformation simulation were compared with a transient full-wheel simulation. The aerodynamic performance and detailed flow features from the time-transformation solution closely matched the full-wheel simulation at fractional of the computation cost.

References

References
1.
Denton
,
J. D.
,
1992
, “
The Calculation of Three-Dimensional Viscous Flow Through Multistage Turbomachines
,”
ASME J. Turbomach.
,
114
, pp.
18
26
.
2.
Adamczyk
,
J. J.
,
1985
, “
Model Equations for Simulating Flows in Multistage Turbomachinery
,”
ASME
Paper No. 85-GT-226.
3.
Galpin
,
P. F.
,
Broberg
,
R. B.
, and
Hutchinson
,
B. R.
,
1995
, “
Three-Dimensional Navier Stokes Predictions of Steady State Rotor/Stator Interaction With Pitch Change
,”
Third Annual Conference of the CFD Society of Canada
, Banff, AB, Canada.
4.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.
5.
Menter
,
F. R.
, and
Egorov
,
Y.
,
2005
, “
A Scale-Adaptive Simulation Model Using Two-Equation Models
,”
AIAA
Paper No. 2005-1095.
6.
Strelets
,
M.
,
2001
, “
Detached Eddy Simulation of Massively Separated Flows
,”
AIAA
Paper No. 2001-0879.
7.
He
,
L.
,
2010
, “
Fourier Methods for Turbomachinery Applications
,”
Prog. Aerosp. Sci.
,
46
, pp.
329
341
.
8.
Rai
,
M. M.
,
1987
, “
Navier-Stokes Simulations of Rotor-Stator Interactions Using Patched and Overlaid Grids
,”
J. Propul. Power
,
3
(
5
), pp.
387
396
.
9.
Erdos
,
J.
, and
Alzner
,
E.
,
1977
, “
Numerical Solution of Periodic Transonic Flow Through a Fan Stage
,”
AIAA J.
,
15
, pp.
1559
1568
.
10.
He
,
L.
,
1990
, “
An Euler Solution for Unsteady Flows Around Oscillating Blades
,”
ASME J. Turbomach.
,
112
(
4
), pp.
714
722
.
11.
Gerolymos
,
G.
,
Michon
,
G.
, and
Neubauer
,
J.
,
2002
, “
Analysis and Application of Chorochronic Periodicity in Turbomachinery Rotor/Stator Interaction Computations
,”
J. Propul. Power
,
18
(
6
), pp.
1139
1152
.
12.
Connell
,
S.
,
Hutchinson
,
B.
,
Galpin
,
P.
,
Campregher
,
R.
, and
Godin
,
P.
,
2012
, “
The Efficient Computation of Transient Flow in Turbine Blade Rows Using Transformation Methods
,”
ASME
Paper No. GT2012-69019.
13.
Sharma
,
G.
,
Zori
,
L.
,
Connell
,
S.
, and
Godin
,
P.
,
2013
, “
Efficient Computation of Large Pitch Ratio Transonic Flow in a Fan With Inlet Distortion
,”
ASME
Paper No. GT2013-95059.
14.
Ning
,
W.
, and
He
,
L.
,
1998
, “
Computation of Unsteady Flows Around Oscillating Blades Using Linear and Non-Linear Harmonic Euler Methods
,”
ASME J. Turbomach.
,
120
(
3
), pp.
508
514
.
15.
Hall
,
K.
,
Thomas
,
J.
, and
Clark
,
W. S.
,
2002
, “
Computation of Unsteady Nonlinear Flows in Cascades Using a Harmonic Balance Technique
,”
AIAA J.
,
40
(
5
), pp.
879
886
.
16.
Gopinath
,
A.
,
van der Weide
,
E.
,
Alonso
,
J. J.
,
Jameson
,
A.
,
Ekici
,
V.
, and
Hall
,
K.
,
2007
, “
Three-Dimensional Unsteady Multi-Stage Turbomachinery Simulations Using the Harmonic Balance Technique
,”
AIAA
Paper No. 2007-0892.
17.
Giles
,
M.
,
1988
, “
Calculation of Unsteady Wake/Rotor Interaction
,”
J. Propul. Power
,
4
(
4
), pp.
356
362
.
18.
Cornelius
,
C.
,
Biesinger
,
T.
,
Galpin
,
P.
, and
Braune
,
A.
,
2013
, “
Experimental and Computational Analysis of a Multistage Axial Compressor Including Stall Prediction by Steady and Transient CFD Methods
,”
ASME
Paper No. GT2013-94639.
19.
Cornelius
,
C.
,
Biesinger
,
T.
,
Zori
,
L.
,
Campregher
,
R.
,
Galpin
,
P.
, and
Braune
,
A.
,
2014
, “
Efficient Time Resolved Multistage CFD Analysis Applied to Axial Compressors
,”
ASME
Paper No. GT2014-26846.
20.
ANSYS, 2015, “
ANSYS Release 16.0
,”
ANSYS Inc.
,
Canonsburg, PA
.
21.
Schneider
,
G.
, and
Raw
,
M.
,
1987
, “
Control Volume Finite-Element Method for Heat Transfer and Fluid Flow Using Collocated Variables—1. Computational Procedure
,”
Numer. Heat Transfer
,
11
(
4
), pp.
363
390
.
22.
Raw
,
M. J.
,
1996
, “
Robustness of Coupled Algebraic Multigrid for the Navier–Stokes Equations
,”
AIAA
Paper No. 96-0297.
23.
Bigalk
,
J.
,
Buchal
,
T.
,
Biesinger
,
T.
,
Nurnberger
,
D.
,
Broeker
,
M.
, and
Schmidt
,
M.
,
2012
, “
SGT5-8000H Experimental Test Results and Validation of High Fidelity 3D CFD
,”
ASME
Paper No. GT2012-69621.
24.
Qizar
,
M.
,
Mansour
,
M.
, and
Goswami
,
S.
,
2013
, “
Study of Steady State and Transient Blade Row CFD Methods in a Moderately Loaded NASA Transonic High-Speed Axial Compressor Stage
,”
ASME
Paper No. GT2013-94739.
25.
Biesinger
,
T.
,
Braune
,
A.
,
Campregher
,
R.
,
Cornelius
,
C.
,
Godin
,
P.
,
Rube
,
C.
,
Schmid
,
G.
, and
Zori
,
L.
,
2010
, “
Unsteady CFD Methods in a Commercial Solver for Turbomachinery
,”
ASME
Paper No. GT2010-22762.
26.
Key
,
N.
,
Lawless
,
P. B.
, and
Fleeter
,
S.
,
2004
, “
Rotor Wake Variability in a Transonic Compressor Stage
,”
ASME
Paper No. GT 53486.
27.
Sanders
,
A. J.
,
1999
, “
Multistage Interaction and Transonic Flow Effects in a High-Speed Axial Compressor
,”
Ph.D. thesis
, Purdue University, West Lafayette, IN.
28.
Richman
,
M.
, and
Fleeter
,
S.
,
2000
, “
Navier–Stokes Simulation of IGV-Rotor-Stator Interactions in a Transonic Compressor
,”
AIAA
Paper No. 2000-3379.
You do not currently have access to this content.