Film cooling is often adopted, where coolant jets are ejected to form a protective layer on the surface against the hot combustor gases. The bending of jets in crossflow results in counter rotating vortex pair (CRVP), which is a cause for high jet lift-off and poor film cooling effectiveness in the near field. There are efforts to mitigate this detrimental effect of CRVP, and thus, to improve the film cooling performance. In the present study, the effects of both downwash and upwash type of vortex generator (VG) on film cooling are numerically analyzed. A series of discrete holes on a flat plate with 35 deg streamwise orientation and connected to a common delivery plenum is used here, where the vortex generators are placed upstream of the holes. The blowing ratio and the density ratio are considered as 0.5 and 1.2, respectively, with a Reynolds number based on freestream velocity and diameter of hole being 15,885. The computations are performed by ANSYS fluent 13.0 using k–ε realizable turbulence model. The results show that vortices generated by downwash vortex generator (DWVG) counteracts the effect of CRVP preventing the jet lift-off, which results in increased effectiveness in streamwise as well as in spanwise directions. However, upwash vortex generator (UWVG) augments the effect of CRVP, resulting in poor performance of film cooling.

References

References
1.
Womack
,
K. M.
,
Schultz
,
M. P.
, and
Volino
,
R. J.
,
2008
, “
Measurements in Film Cooling Flows With Periodic Wakes
,”
ASME J. Turbomach.
,
130
(
4
), p.
041008
.
2.
Goldstein
,
R. J.
,
1971
, “
Film Cooling
,”
Adv. Heat Transfer
,
7
, pp.
321
379
.
3.
Jabbari
,
M. Y.
, and
Goldstein
,
R. J.
,
1978
, “
Adiabatic Wall Temperature and Heat Transfer Downstream of Injection Through Two Rows of Holes
,”
ASME J. Eng. Gas Turbines Power
,
100
(
2
), pp.
303
307
.
4.
Sasaki
,
K.
,
Takahara
,
K.
,
Kumagai
,
T.
, and
Hamano
,
J.
,
1979
, “
Film Cooling Effectiveness for Injection From Multirows of Holes
,”
ASME J. Eng. Gas Turbines Power
,
101
(
1
), pp.
101
108
.
5.
Jubran
,
B.
, and
Brown
,
A.
,
1985
, “
Film Cooling From Two Rows of Holes Inclined in the Stream-Wise and Span-Wise Directions
,”
ASME J. Eng. Gas Turbines Power
,
107
(
1
), pp.
84
91
.
6.
Andreopoulos
,
J.
, and
Rodi
,
W.
,
1984
, “
Experimental Investigation of Jets in a Crossflow
,”
J. Fluid Mech.
,
138
, pp.
93
127
.
7.
Takeishi
,
K.
,
Aoki
,
S.
,
Sato
,
T.
, and
Tsukagoshi
,
K.
,
1992
, “
Film Cooling on a Gas Turbine Rotor Blade
,”
ASME J. Turbomach.
,
114
(
4
), pp.
828
834
.
8.
Han
,
J. C.
,
2006
, “
Turbine Blade Cooling Studies at Teaxs A&M 1980-2004
,”
AIAA J. Thermophys. Heat Transfer
,
20
(
2
), pp.
161
187
.
9.
Ligrani
,
P. M.
, and
Ramsey
,
A. E.
,
1994
, “
Film Cooling From Holes With Compound Angle Orientations—Part 1: Results Downstream of Two Staggered Rows of Holes With 3D Spanwise Spacing
,”
ASME J. Heat Transfer
,
116
(
2
), pp.
341
352
.
10.
Jung
,
I. S.
, and
Lee
,
J. S.
,
2000
, “
Effects of Orientation Angles on Film Cooling Over a Flat Plate Boundary Layer Temperature Distributions and Adiabatic Film Cooling Effectiveness
,”
ASME J. Turbomach.
,
122
(
1
), pp.
153
160
.
11.
Goldstein
,
R. J.
, and
Jin
,
P.
,
2001
, “
Film Cooling Downstream of a Row of Discrete Holes With Compound Angle
,”
ASME J. Turbomach.
,
123
(
2
), pp.
222
230
.
12.
Gritsch
,
M.
,
Schulz
,
A.
, and
Wittig
,
S.
,
1998
, “
Adiabatic Wall Effectiveness Measurements of Film-Cooling Holes With Expanded Exits
,”
ASME J. Turbomach.
,
120
(
3
), pp.
549
556
.
13.
Bell
,
C. M.
,
Bell
,
H.
, and
Ligrani
,
P. M.
,
2000
, “
Film Cooling From Shaped Holes
,”
ASME J. Heat Transfer
,
122
(
2
), pp.
224
232
.
14.
Saumweber
,
C.
,
Schulz
,
A.
, and
Wittig
,
S.
,
2003
, “
Free-Stream Turbulence Effects on Film Cooling With Shaped Holes
,”
ASME J. Turbomach.
,
125
(
1
), pp.
65
73
.
15.
Bunker
,
R. S.
,
2005
, “
A Review of Shaped Hole Turbine Film Cooling Technology
,”
ASME J. Heat Transfer
,
127
(
4
), pp.
441
453
.
16.
Kelso
,
R. M.
,
Lim
,
T.
, and
Perry
,
A. E.
,
1996
, “
An Experimental Study of Round Jets in Cross-Flow
,”
J. Fluid Mech.
,
306
, pp.
111
144
.
17.
Smith
,
S. H.
, and
Mungal
,
M. G.
,
1998
, “
Mixing, Structure, and Scaling of the Jet in Crossflow
,”
J. Fluid Mech.
,
357
, pp.
83
122
.
18.
Fric
,
T.
, and
Roshko
,
A.
,
1994
, “
Vortical Structure in the Wake of a Transverse Jet
,”
J. Fluid Mech.
,
279
, pp.
1
47
.
19.
Peterson
,
S.
, and
Plesniak
,
M.
,
2004
, “
Evolution of Jets Emanating From Short Holes Into Crossflow
,”
J. Fluid Mech.
,
503
, pp.
57
91
.
20.
Mehendale
,
A.
, and
Han
,
J.
,
1992
, “
Influence of High Mainstream Turbulence on Leading Edge Film Cooling Heat Transfer
,”
ASME J. Turbomach.
,
114
(
4
), pp.
707
715
.
21.
Mick
,
W.
, and
Mayle
,
R.
,
1988
, “
Stagnation Film Cooling and Heat Transfer, Including Its Effect Within the Hole Pattern
,”
ASME J. Turbomach.
,
110
(
1
), pp.
66
72
.
22.
Ekkad
,
S. V.
,
Ou
,
S.
, and
Rivir
,
R. B.
,
2004
, “
A Transient Infrared Thermography Method for Simultaneous Film Cooling Effectiveness and Heat Transfer Coefficient Measurements From a Single Test
,”
ASME J. Turbomach.
,
126
(
4
), pp.
597
603
.
23.
Na
,
S.
, and
Shih
,
T. I-P.
,
2007
, “
Increasing Adiabatic Film-Cooling Effectiveness by Using an Upstream Ramp
,”
ASME J. Heat Transfer
,
129
(
4
), pp.
464
471
.
24.
Sakai
,
E.
,
Takahashi
,
T.
, and
Agata
,
Y.
,
2013
, “
Experimental Study on Effects of Internal Ribs and Rear Bumps on Film Cooling Effectiveness
,”
ASME J. Turbomach.
,
135
(
3
), p.
031025
.
25.
Heidmann
,
J. D.
, and
Ekkad
,
S.
,
2008
, “
A Novel Antivortex Turbine Film-Cooling Hole Concept
,”
ASME J. Turbomach.
,
130
(
3
), p.
031020
.
26.
Rigby
,
D. L.
, and
Heidmann
,
J. D.
,
2008
, “
Improved Film Cooling Effectiveness by Placing a Vortex Generator Downstream of Each Hole
,”
ASME
Paper No. GT-2008-51361.
27.
Shinn
,
A. F.
, and
Vanka
,
S. P.
,
2012
, “
Large Eddy Simulations of Film-Cooling Flows With a Micro-Ramp Vortex Generator
,”
ASME J. Turbomach.
,
135
(
1
), p.
011004
.
28.
Funazaki
,
K.
,
Nakata
,
R.
,
Kawabata
,
H.
,
Tagawa
,
H.
, and
Horiuchi
,
Y.
,
2014
, “
Improvement of Flat-Plate Film Cooling Performance by Double Flow Control Devices—Part I: Investigations on Capability of a Base-Type Device
,”
ASME
Paper No. GT2014-25751.
29.
Sinha
,
A. K.
,
Bogard
,
D. G.
, and
Crawford
,
M. E.
,
1991
, “
Film-Cooling Effectiveness Downstream of a Single Row of Holes With Variable Density Ratio
,”
ASME J. Turbomach.
,
113
(
3
), pp.
442
449
.
30.
Tyagi
,
M.
, and
Acharya
,
S.
,
2003
, “
Large Eddy Simulation of Film Cooling Flow From an Inclined Cylindrical Jet
,”
ASME J. Turbomach.
,
125
(
4
), pp.
734
742
.
You do not currently have access to this content.