Tangential endwall contouring (TEWC) is intended to improve the turbomachinery blading efficiency. This paper summarizes the experimental and numerical investigation of a test turbine with endwall contoured vanes and blades. Constant section (2D) airfoils as well as optimized compound lean (3D) high pressure steam turbine blading in baseline and endwall contoured configurations have been examined. Brush seals (BSs) are implemented within the casing sided cavities to minimize the leakage flow near the tip endwalls, where the contouring is also applied. The pressure and temperature data that are recorded in three axial measuring planes are plotted to visualize the change in flow structure. This shows that the efficiency is increased for 2D airfoils by means of endwall contouring. However, the efficiency of the first stage suffers, and the endwall contouring is still beneficial for the overall performance of the engine. Both phenomena (an efficiency loss in stage one and an improvement of the performance in stage two) have also been measured for the optimized 3D configurations; thus, it can be expected that the endwall contouring has also a beneficial impact on the performance of multirow turbines. The numerical investigations demonstrate in detail, how the secondary flow phenomena are influenced by end-wall contouring and a description of the changes in vortex formations as well as blade loading are given for the various configurations. It has been found that for steady computational fluid dynamics (CFD) simulations the use of stage interfaces suppresses the positive effects of the endwall contour onto the downstream blade row.

References

References
1.
Bischoff
,
H.
,
1983
, “Einrichtung zur Verminderung von Sekundaerstroemungsverlusten in Einem Beschaufelten Stroemungskanal,” Patent Document No. DE3202855 C1.
2.
Atkins
,
M. J.
,
1987
, “
Secondary Losses and End-Wall Profiling in a Turbine Cascade
,” IMechE-Paper No. C255/87.
3.
Harvey
,
N. W.
,
Brennan
,
G.
,
Newman
,
D. G.
, and
Rose
,
M. G.
,
2002
, “
Improving Turbine Efficiency Using Non-Axisymmetric Endwalls: Validation in the Multi-Row Environment and With Low Aspect Ratio Blading
,”
ASME
Paper No. GT2002-30337.
4.
Hartland
,
J. C.
,
Gregory-Smith
,
D. G.
,
Harvey
,
N. W.
, and
Rose
,
M. G.
,
2000
, “
Nonaxisymmetric Turbine Endwall Design—Part II: Experimental Validation
,”
ASME J. Turbomach.
,
122
(
2
), pp.
286
293
.
5.
Gregory-Smith
,
D. G.
,
Ingram
,
G.
,
Jayaraman
,
P.
,
Harvey
,
N. W.
, and
Rose
,
M. G.
,
2001
, “
Non-Axisymmetric Turbine Endwall Profiling
,”
Proc. Inst. Mech. Eng., Part A
,
215
(
6
), pp.
721
734
.
6.
Ingram
,
G.
,
Gregory-Smith
,
D.
,
Rose
,
M.
,
Harvey
,
N.
, and
Brennan
,
G.
,
2002
, “
The Effect of End-Wall Profiling on Secondary Flow and Loss Development in a Turbine Cascade
,”
ASME
Paper No. GT2002-30339.
7.
Ingram
,
G.
,
Gregory-Smith
,
D.
, and
Harvey
,
N.
,
2005
, “
Investigation of a Novel Secondary Flow Feature in a Turbine Cascade With Endwall Profiling
,”
ASME J. Turbomach.
,
127
(
1
), pp.
209
214
.
8.
Praisner
,
T. J.
,
Allen-Bradley
,
E.
,
Grover
,
E. A.
,
Knezevici
,
D. C.
, and
Sjolander
,
S.
,
2007
, “
Application of Non-Axisymmetric Endwall Contouring to Conventional and High-Lift Turbine Airfoils
,”
ASME J. Turbomach.
,
135
(
6
), p.
061006
.
9.
Knezevici
,
D. C.
,
Sjolander
,
S. A.
,
Praisner
,
T. J.
,
Allen-Bradley
,
E.
, and
Grover
,
E.
,
2008
, “
Measurements of Secondary Losses in a Turbine Cascade With the Implementation of Non-Axisymmetric Endwall Contouring
,”
ASME J. Turbomach.
,
132
(
1
), p.
011013
.
10.
Brennan
,
G.
,
Harvey
,
N. W.
,
Rose
,
M. G.
,
Fomison
,
N.
, and
Taylor
,
M. D.
,
2003
, “
Improving the Efficiency of the Trent 500-HP Turbine Using Nonaxisymmetric Endwalls—Part I: Turbine Design
,”
ASME J. Turbomach.
,
125
(
3
), pp.
497
504
.
11.
Rose
,
M. G.
,
Harvey
,
N. W.
,
Seaman
,
P.
,
Newman
,
D. A.
, and
McManus
,
D.
,
2001
, “
Improving the Efficiency of the Trent 500 HP Turbine Using Non-Axisymmetric Endwalls—Part II: Experimental Validation
,”
ASME
Paper No. 2001-GT-0505.
12.
Bergh
,
J.
,
Snedden
,
G.
, and
Meyer
,
C.
,
2012
, “
Optimization of Non-Axisymmetric End Wall Contours for the Rotor of a Low Speed, 1 1/2 Stage Research Turbine With Unshrouded Blades
,”
ASME
Paper No. GT2012-68569.
13.
Snedden
,
G.
,
Dunn
,
D.
,
Ingram
,
G.
, and
Gregory-Smith
,
D.
,
2010
, “
The Performance of a Generic Non-Axisymmetric Endwall in a Single Stage, Rotating Turbine at On and Off-Design Conditions
,”
ASME
Paper No. GT2010-22006.
14.
Dunn
,
D.
,
Snedden
,
G.
,
von Backström
,
T.
, and
Mdluli
,
M. P.
,
2013
, “
Unsteady Effects of a Generic Non-Axisymmetric Endwall Contour on the Rotor of a 1½ Stage Low Speed Turbine Test Rig
,”
ASME
Paper No. GT2013-94961.
15.
Dunn
,
D.
,
Snedden
,
G.
, and
von Backström
,
T.
,
2014
, “
Unsteady Effects of a Generic Non-Axisymmetric Rotor Endwall Contour on a 1½ Stage Turbine Test Rig at Off Design Conditions
,”
ASME
Paper No. GT2014-25524.
16.
Germain
,
T.
,
Nagel
,
M.
,
Raab
,
I.
,
Schuepbach
,
P.
,
Abhari
,
R. S.
, and
Rose
,
M.
,
2010
, “
Improving Efficiency of a High Work Turbine Using Non-Axisymmetric Endwalls—Part I: Endwall Design and Performance
,”
ASME J. Turbomach.
,
132
(
2
), p.
021007
.
17.
Bagshaw
,
D. A.
,
Ingram
,
G. L.
,
Gregory-Smith
,
D. G.
, and
Stokes
,
M. R.
,
2005
, “
An Experimental Study of Reverse Compound Lean in a Linear Turbine Cascade
,”
Proc. Inst. Mech. Eng., Part A
,
219
(
6
), pp.
443
449
.
18.
Bagshaw
,
D. A.
,
Ingram
,
G. L.
,
Gregory-Smith
,
D. G.
, and
Stokes
,
M. R.
,
2008
, “
An Experimental Study of Three-Dimensional Turbine Blades Combined With Profiled Endwalls
,”
Proc. Inst. Mech. Eng., Part A
,
222
(
1
), pp.
103
110
.
19.
Bagshaw
,
D. A.
,
Ingram
,
G. L.
,
Gregory-Smith
,
D. G.
,
Stokes
,
M. R.
, and
Harvey
,
N. W.
,
2008
, “
The Design of Three-Dimensional Turbine Blades Combined With Profiled Endwalls
,”
Proc. Inst. Mech. Eng., Part A
,
222
(
1
), pp.
93
102
.
20.
Gregory-Smith
,
D.
,
Bagshaw
,
D.
,
Ingram
,
G.
, and
Stokes
,
M.
,
2008
, “
Using Profiled Endwalls, Blade Lean and Leading Edge Extensions to Minimize Secondary Flow
,”
ASME
Paper No. GT2008-50811.
21.
Poehler
,
T.
,
Niewoehner
,
J.
,
Jeschke
,
P.
, and
Guendogdu
,
Y.
,
2014
, “
Investigation of Non-Axisymmetric Endwall Contouring and 3D Airfoil Design in a 1.5 Stage Axial Turbine—Part I: Design and Novel Numerical Analysis Method
,”
ASME
Paper No. GT2014-26784.
22.
Niewoehner
,
J.
,
Poehler
,
T.
,
Jeschke
,
P.
, and
Guendogdu
,
Y.
,
2015
, “
Investigation of Non-Axisymmetric Endwall Contouring and 3D Airfoil Design in a 1.5 Stage Axial Turbine—Part II: Experimental Validation
,”
ASME J. Turbomach.
,
137
(
8
), p.
081010
.
23.
Schwab
,
S.
,
2014
, “
Experimentelle Untersuchung von umfangsunsymmetrischen Dampfturbinenbeschaufelungen und von Temperaturausgleichsphänomenen an einer 2-stufigen Versuchsturbine
,” Ph.D. dissertation, RWTH Aachen, Aachen, Germany.
24.
Zimmermann
,
T. W.
,
Wirsum
,
M.
,
Fowler
,
A.
, and
Patel
,
K.
,
2016
, “
Influence of Adjusting Control Accuracy on Pressure Probe Measurements in Turbo Machines
,”
J. Energy Power Eng.
,
10
(
2016
), pp.
522
533
.
25.
Zimmermann
,
T. W.
,
Curkovic
,
O.
, and
Wirsum
,
M.
,
2016
, “
Influence of Tip Seal Configurations on Flow and Efficiency for Shrouded Turbine Blades
,”
JGPP
,
8
(
2
), pp.
9
17
.
26.
Curkovic
,
O.
,
Zimmermann
,
T. W.
,
Wirsum
,
M.
,
Fowler
,
A.
, and
Patel
,
K.
,
2016
, “
Comparison of 2D and 3D Airfoils in Combination With Non Axisymmetric Endwall Contouring: Part 2 Numerical Investigation
,”
ASME
Paper No. GT2016-56914.
27.
DIN V ENV
,
1999
, “
Leitfaden zur Angabe der Unsicherheit beim Messen
,” Deutsches Institut für Normung e.V., Berlin, Standard No. DIN V ENV 13005:
1999
.
28.
Scheller
,
G.
,
2003
, “
Messunsicherheit einer Temperaturmesskette mit Beispielrechnungen
,” JUMO GmbH & Co. KG, Fulda, Germany.
29.
Walraevens
,
R. E.
,
2000
, “
Experimentelle Analyse dreidimensionaler instationärer Strömungseffekte in einer 1-1/2-stufigen Axialturbine
,” Ph.D. dissertation, Fakultät für Maschinenwesen der RWTH Aachen, Aachen, Germany.
30.
MacMillan
,
F. A.
,
1954
, “
Viscous Effects on Flattened Pitot Tubes at Low Speeds
,”
J. R. Aeronaut. Soc.
,
58
(
528
), pp.
837
839
.
31.
Bohn
,
D.
,
1977
, “
Untersuchung zweier verschiedener axialer Überschallverdichterstufen unter besonderer Berücksichtigung der Wechselwirkungen zwischen Lauf- und Leitrad
,” Ph.D. dissertation, Fakultät für Maschinenwesen der RWTH Aachen, Aachen, Germany.
32.
Tsien
,
H. S.
,
1948
, “
Wind-Tunnel Testing Problems in Subaero-Dynamics
,”
J. Aerosp. Sci.
,
15
(10), p.
573
.
You do not currently have access to this content.