Turbine vanes are typically assembled as a section containing single or double airfoil units in an annular pattern. First stage guide vane assembly results in two common mating interfaces: a gap between combustor and vane endwall and another resulted from the adjacent sections, called slashface. High pressure coolant could leak through these gaps to reduce the ingestion of hot gas and achieve certain cooling benefit. As vane endwall region flow field is already very complicated due to highly three-dimensional secondary flows, then a significant influence on endwall cooling can be expected due to the gap leakage flows. To determine the effect of leakage flows from those gaps, film cooling effectiveness distributions were measured using pressure sensitive paint (PSP) technique on the endwall of a scaled up, midrange industrial turbine vane geometry with the multiple rows of discrete film cooling (DFC) holes inside the passages. Experiments were performed in a blow-down wind tunnel cascade facility at the exit Mach number of 0.5 corresponding to Reynolds number of 3.8 × 105 based on inlet conditions and axial chord length. Passive turbulence grid was used to generate free-stream turbulence (FST) level about 19% with an integral length scale of 1.7 cm. Two parameters, coolant-to-mainstream mass flow ratio (MFR) and density ratio (DR), were studied. The results are presented as two-dimensional film cooling effectiveness distribution on the vane endwall surface with the corresponding spanwise averaged values along the axial direction.

References

References
1.
Langston
,
L. S.
,
Nice
,
L. M.
, and
Hooper
,
R. M.
,
1977
, “
Three-Dimensional Flow Within a Turbine Cascade Passage
,”
ASME J. Eng. Power
,
99
(
1
), pp.
21
28
.
2.
Langston
,
L. S.
,
1980
, “
Crossflows in a Turbine Cascade Passage
,”
J. Eng. Power
,
102
(
4
), pp.
866
874
.
3.
Sharma
,
O. P.
, and
Butler
,
T. L.
,
1987
, “
Prediction of Endwall Losses and Secondary Flows in Axial Flow Turbine Cascades
,”
ASME J. Turbomach.
,
109
(
2
), pp.
229
236
.
4.
Goldstein
,
R. J.
, and
Spores
,
R. A.
,
1988
, “
Turbulent Transport on the Endwall in the Region Between Adjacent Turbine Blades
,”
ASME J. Heat Transfer
,
110
(
4a
), pp.
862
869
.
5.
Takeishi
,
K.
,
Matsuura
,
M.
,
Aoki
,
S.
, and
Sato
,
T.
,
1990
, “
An Experimental Study of Heat Transfer and Film Cooling on Low Aspect Ratio Turbine Nozzles
,”
ASME J. Turbomach.
,
112
(
3
), pp.
488
496
.
6.
Harasgama
,
S. P.
, and
Burton
,
C. S.
,
1992
, “
Film Cooling Research on the Endwall of a Turbine Nozzle Guide Vane in a Short Duration Annular Cascade—Part 1: Experimental Technique and Results
,”
ASME J. Turbomach.
,
114
(
4
), pp.
734
740
.
7.
Friedrichs
,
S.
,
Hodson
,
H. P.
, and
Dawes
,
W. N.
,
1996
, “
Distribution of Film-Cooling Effectiveness on a Turbine Endwall Measured Using the Ammonia and Diazo Technique
,”
ASME J. Turbomach.
,
118
(
4
), pp.
613
621
.
8.
Friedrichs
,
S.
,
Hodson
,
H. P.
, and
Dawes
,
W. N.
,
1997
, “
Aerodynamic Aspects of Endwall Film Cooling
,”
ASME J. Turbomach.
,
119
(
4
), pp.
786
793
.
9.
Friedrichs
,
S.
,
Hodson
,
H. P.
, and
Dawes
,
W. N.
,
1998
, “
The Design of an Improved Endwall Film Cooling Configuration
,”
ASME
Paper No. 98-GT-483.
10.
Barigozzi
,
G.
,
Benzoni
,
G.
,
Franchini
,
G.
, and
Derdichizzi
,
A.
,
2005
, “
Fan-Shaped Hole Effects on the Aero-Thermal Performance of a Film-Cooled Endwall
,”
ASME
Paper No. GT2005-68544.
11.
Blair
,
M. F.
,
1974
, “
An Experimental Study of Heat Transfer and Film Cooling on Large-Scale Turbine Endwall
,”
ASME J. Heat Transfer
,
96
(
4
), pp.
524
529
.
12.
Granser
,
D.
, and
Schulenberg
,
T.
,
1990
, “
Prediction and Measurement of Film Cooling Effectiveness for a First-Stage Turbine Vane Shroud
,”
ASME
Paper No. 90-GT-95.
13.
Burd
,
S. W.
, and
Simon
,
T. W.
,
2000
, “
Effects of Slot Bleed Injection Over a Contoured Endwall on Nozzle Guide Vane Cooling Performance—Part I: Flow Field Measurements
,”
ASME
Paper No. 2000-GT-199.
14.
Burd
,
S. W.
,
Satterness
,
C. J.
, and
Simon
,
T. W.
,
2000
, “
Effects of Slot Bleed Injection Over a Contoured Endwall on Nozzle Guide Vane Cooling Performance—Part II: Thermal Measurements
,”
ASME
Paper No. 2000-GT-200.
15.
Oke
,
R.
,
Simon
,
T.
,
Shih
,
T.
,
Zhu
,
B.
,
Lin
,
Y. L.
, and
Chyu
,
M.
,
2001
, “
Measurements Over a Film-Cooled, Contoured Endwall With Various Coolant Injection Rates
,”
ASME
Paper No. 2001-GT-140.
16.
Oke
,
R.
, and
Simon
,
T.
,
2002
, “
Film-Cooling Experiments With Flow Introduced Upstream of a First Stage Nozzle Guide Vane Through Slots of Various Geometries
,”
ASME
Paper No. GT2002-30169.
17.
Lynch
,
S. P.
, and
Thole
,
K. A.
,
2008
, “
The Effect of Combustor-Turbine Interface Gap Leakage on the Endwall Heat Transfer for a Nozzle Guide Vane
,”
ASME J. Turbomach.
,
130
(
4
), p.
041019
.
18.
Liu
,
G.
,
Liu
,
S.
,
Zhu
,
H.
,
Lapworth
,
B. C.
, and
Forest
,
A. E.
,
2004
, “
Endwall Heat Transfer and Film Cooling Measurements in a Turbine Cascade With Injection Upstream of Leading Edge
,”
Heat Transfer Asian Res.
,
33
(
3
), pp.
141
152
.
19.
Oke
,
R.
,
Simon
,
T. W.
,
Burd
,
S. W.
, and
Vahlberg
,
R.
,
2000
, “
Measurements in a Turbine Cascade Over a Contoured Endwall: Discrete Hole Injection of Bleed Flow
,”
ASME
Paper No. 2000-GT-0214.
20.
Zhang
,
L. J.
, and
Jaiswal
,
R. S.
,
2001
, “
Turbine Nozzle Endwall Film Cooling Study Using Pressure-Sensitive Paint
,”
ASME J. Turbomach.
,
123
(
4
), pp.
730
735
.
21.
Zhang
,
L. J.
, and
Moon
,
H. K.
,
2003
, “
Turbine Nozzle Endwall Inlet Film Cooling–The Effect of a Backward Facing Step
,”
ASME
Paper No. GT2003-38319.
22.
Zhang
,
L. J.
,
Yin
,
J.
,
Liu
,
K.
, and
Moon
,
H. K.
,
2003
, “
Effect of Hole Diameter on Nozzle Endwall Film Cooling and Associated Phantom Cooling
,”
ASME
Paper No. GT2015-42541.
23.
Knost
,
D. G.
, and
Thole
,
K. A.
,
2004
, “
Adiabatic Effectiveness Measurements of Endwall Film Cooling for a First Stage Vane
,”
ASME
Paper No. GT2004-53326.
24.
Aunapu
,
N. V.
,
Volino
,
R. J.
,
Flack
,
K. A.
, and
Stoddard
,
R. M.
,
2000
, “
Secondary Flow Measurements in a Turbine Passage With Endwall Flow Modification
,”
ASME J. Turbomach.
,
122
(
4
), pp.
651
658
.
25.
Reid
,
K.
,
Denton
,
J.
,
Pullan
,
G.
,
Curtis
,
E.
, and
Longley
,
J.
,
2005
, “
The Interaction of Turbine Inter-Platform Leakage Flow With the Mainstream Flow
,”
ASME
Paper No. GT2005-68151.
26.
Reid
,
K.
,
Denton
,
J.
,
Pullan
,
G.
,
Curtis
,
E.
, and
Longley
,
J.
,
2006
, “
Reducing the Performance Penalty Due to Turbine Inter-Platform Gaps
,”
ASME
Paper No. GT2006-90839.
27.
Ranson
,
W.
,
Thole
,
K. A.
, and
Cunha
,
F.
,
2005
, “
Adiabatic Effectiveness Measurements and Predictions of Leakage Flows Along a Blade Endwall
,”
ASME J. Turbomach.
,
127
(
3
), pp.
609
618
.
28.
Cardwell
,
N. D.
,
Sundaram
,
N.
, and
Thole
,
K. A.
,
2007
, “
The Effects of Varying the Combustor-Turbine Gap
,”
ASME J. Turbomach.
,
129
(
4
), pp.
756
764
.
29.
Lynch
,
S. P.
, and
Thole
,
K. A.
,
2011
, “
The Effect of the Combustor-Turbine Slot and Midpassage Gap on Vane Endwall Heat Transfer
,”
ASME J. Turbomach.
,
133
(
4
), p.
041002
.
30.
Piggush
,
J. D.
, and
Simon
,
T. W.
,
2005
, “
Flow Measurements in a First Stage Nozzle Cascade Having Endwall Contouring, Leakage, and Assembly Features
,”
ASME
Paper No. GT2005-68340.
31.
Piggush
,
J. D.
, and
Simon
,
T. W.
,
2005
, “
Flow Measurements in a First Stage Nozzle Cascade Having Leakage and Assembly Features: Effects of Endwall Steps and Leakage on Aerodynamic Losses
,”
ASME
Paper No. IMCE2005-83032.
32.
Shiau
,
C. C.
,
Chen
,
A. F.
,
Han
,
J. C.
,
Azad
,
S.
, and
Lee
,
C. P.
,
2016
, “
Full-Scale Turbine Vane End-Wall Film-Cooling Effectiveness Distribution Using PSP Technique
,”
ASME J. Turbomach.
,
138
(
5
), p.
051002
.
33.
Narzary
,
D. P.
,
Liu
,
K. C.
,
Rallabandi
,
A. P.
, and
Han
,
J. C.
,
2011
, “
Influence of Coolant Density on Turbine Blade Film-Cooling Using Pressure Sensitive Paint Technique
,”
ASME J. Turbomach.
,
134
(
3
), p.
031006
.
34.
Kline
,
S. J.
, and
McClintock
,
F. A.
,
1953
, “
Describing Uncertainties in a Single Sample Experiment
,”
Mech. Eng.
,
75
, pp.
3
8
.
35.
Han
,
J. C.
,
Dutta
,
S.
, and
Ekkad
,
S. V.
,
2013
,
Gas Turbine Heat Transfer and Cooling Technology
,
2nd ed.
,
CRC Press
,
Taylor & Francis Group, New York
.
You do not currently have access to this content.