Experimental results are presented for a double wall cooling arrangement which simulates a portion of a combustor liner of a gas turbine engine. The results are collected using a new experimental facility designed to test full-coverage film cooling and impingement cooling effectiveness using either cross flow, impingement, or a combination of both to supply the film cooling flow. The present experiment primarily deals with cross flow supplied full-coverage film cooling for a sparse film cooling hole array that has not been previously tested. Data are provided for turbulent film cooling, contraction ratio of 1, blowing ratios ranging from 2.7 to 7.5, coolant Reynolds numbers based on film cooling hole diameter of about 5000–20,000, and mainstream temperature step during transient tests of 14 °C. The film cooling hole array consists of a film cooling hole diameter of 6.4 mm with nondimensional streamwise (X/de) and spanwise (Y/de) film cooling hole spacing of 15 and 4, respectively. The film cooling holes are streamwise inclined at an angle of 25 deg with respect to the test plate surface and have adjacent streamwise rows staggered with respect to each other. Data illustrating the effects of blowing ratio on adiabatic film cooling effectiveness and heat transfer coefficient are presented. For the arrangement and conditions considered, heat transfer coefficients generally increase with streamwise development and increase with increasing blowing ratio. The adiabatic film cooling effectiveness is determined from measurements of adiabatic wall temperature, coolant stagnation temperature, and mainstream recovery temperature. The adiabatic wall temperature and the adiabatic film cooling effectiveness generally decrease and increase, respectively, with streamwise position, and generally decrease and increase, respectively, as blowing ratio becomes larger.

References

References
1.
Ligrani
,
P. M.
,
Goodro
,
M.
,
Fox
,
M.
, and
Moon
,
H.-K.
,
2015
, “
Full-Coverage Film Cooling: Heat Transfer Coefficients and Film Effectiveness for a Sparse Hole Array at Different Blowing Ratios and Contraction Ratios
,”
ASME J. Heat Transfer
,
137
(
3
), p.
032201
.
2.
Ligrani
,
P. M.
,
Goodro
,
M.
,
Fox
,
M.
, and
Moon
,
H.-K.
,
2012
, “
Full-Coverage Film Cooling: Film Effectiveness and Heat Transfer Coefficients for Dense and Sparse Hole Arrays at Different Blowing Ratios
,”
ASME J. Turbomach.
,
134
(
6
), p.
061039
.
3.
Lee
,
J.
,
Ren
,
Z.
,
Ligrani
,
P. M.
,
Lee
,
D. H.
,
Fox
,
M.
, and
Moon
,
H.-K.
,
2014
, “
Cross-Flow Effects on Impingement Array Heat Transfer With Varying Jet-to-Target Plate Distance and Hole Spacing
,”
Int. J. Heat Mass Transfer
,
75
, pp.
534
544
.
4.
Scrittore
,
J. J.
,
Thole
,
K. A.
, and
Burd
,
S. W.
,
2007
, “
Investigation of Velocity Profiles for Effusion Cooling of a Combustor Liner
,”
ASME J. Turbomach.
,
129
(
3
), pp.
518
526
.
5.
Baldauf
,
S.
,
Schultz
,
A.
, and
Wittig
,
S.
,
2001
, “
High-Resolution Measurements of Local Effectiveness From Discrete Hole Film Cooling
,”
ASME J. Turbomach.
,
123
(
4
), pp.
758
765
.
6.
Baldauf
,
S.
,
Schultz
,
A.
, and
Wittig
,
S.
,
2001
, “
High-Resolution Measurements of Local Heat Transfer Coefficients From Discrete Hole Film Cooling
,”
ASME J. Turbomach.
,
123
(
4
), pp.
749
757
.
7.
Bell
,
C. M.
,
Hamakawa
,
H.
, and
Ligrani
,
P. M.
,
2000
, “
Film Cooling From Shaped Holes
,”
ASME J. Heat Transfer
,
122
(
2
), pp.
224
232
.
8.
Yuen
,
C. H. N.
, and
Martinez-Botas
,
R. F.
,
2005
, “
Film Cooling Characteristics of Row of Round Holes at Various Streamwise Angles in a Crossflow: Part I. Effectiveness
,”
Int. J. Heat Mass Transfer
,
48
(
23–24
), pp.
4995
5016
.
9.
Coulthard
,
S. M.
,
Volino
,
R. J.
, and
Flack
,
K. A.
,
2006
, “
Effect of Unheated Starting Lengths on Film Cooling Experiments
,”
ASME J. Turbomach.
,
128
(
3
), pp.
579
588
.
10.
Saumweber
,
C.
, and
Schulz
,
A.
,
2004
, “
Interaction of Film Cooling Rows: Effects of Hole Geometry and Row Spacing on the Cooling Performance Downstream of the Second Row of Holes
,”
ASME J. Turbomach.
,
126
(
2
), pp.
237
246
.
11.
Chappell
,
J.
,
Ligrani
,
P. M.
,
Sreekanth
,
S.
,
Lucas
,
T.
, and
Vlasic
,
E.
,
2010
, “
Aerodynamic Performance of Suction-Side Gill-Region Film Cooling
,”
ASME J. Turbomach.
,
132
(
3
), p.
031020
.
12.
Chappell
,
J.
,
Ligrani
,
P. M.
,
Sreekanth
,
S.
, and
Lucas
,
T.
,
2010
, “
Suction-Side Gill-Region Film Cooling: Effects of Hole Shape and Orientation on Adiabatic Effectiveness and Heat Transfer Coefficient
,”
ASME J. Turbomach.
,
132
(
3
), p.
031022
.
13.
Lin
,
Y.
,
Song
,
B.
,
Li
,
B.
,
Liu
,
G.
, and
Wu
,
Z.
,
2003
, “
Investigation of Film Cooling Effectiveness of Full-Coverage Inclined Multihole Walls With Different Hole Arrangements
,”
ASME
Paper No. GT-2003-38881.
14.
Schulz
,
A.
,
2001
, “
Combustor Liner Cooling Technology in Scope of Reduced Pollutant Formation and Rising Thermal Efficiencies
,”
Heat Transfer in Gas Turbine Systems
(Annals of the New York Academy of Sciences, Vol.
934
),
R. J.
Goldstein
, ed.,
New York Academy of Sciences, Wiley
,
New York
, pp.
135
146
.
15.
Bailey
,
J. C.
,
Intile
,
J.
,
Tolpadi
,
A.
,
Fric
,
T.
,
Nirmalan
,
N. V.
, and
Bunker
,
R. S.
,
2002
, “
Experimental and Numerical Study of Heat Transfer in a Gas Turbine Combustor Liner
,”
ASME J. Eng. Gas Turbines Power
,
125
(
5
), pp.
994
1002
.
16.
Amano
,
R. S.
,
2008
, “
Advances in Gas Turbine Blade Cooling Technology
,”
Advanced Computational Methods and Experiments in Heat Transfer X
,
B.
Sunden
and
C. A.
Brebbia
, eds.,
WIT Press
,
Southampton, UK
.
17.
Bunker
,
R. S.
,
2008
, “
Innovative Gas Turbine Cooling Techniques
,”
Thermal Engineering in Power Systems
,
R. S.
Amano
and
B.
Sunden
, eds.,
WIT Press
,
Southampton, UK
.
18.
Cho
,
H. H.
, and
Rhee
,
D. H.
,
2001
, “
Local Heat/Mass Transfer Measurement on the Effusion Plate in Impingement/Effusion Cooling Systems
,”
ASME J. Turbomach.
,
123
(
3
), pp.
601
608
.
19.
King
,
A.
, and
Jagannatha
,
D.
,
2009
, “
Simulation of Synthetic Jets With Non-Sinusoidal Forcing Functions for Heat Transfer Applications
,”
18th World IMACS Congress and MODSIM09 International Congress on Modelling and Simulation
, Cairns, Australia, July 13–17, pp.
1732
1738
.http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.487.4512&rep=rep1&type=pdf
20.
Kumar
,
S.
,
Amano
,
R. S.
, and
Lucci
,
J. M.
,
2013
, “
Numerical Simulations of Heat Transfer Distribution of a Two-Pass Square Channel With V-Rib Turbulator and Bleed Holes
,”
J. Heat Mass Transfer
,
49
(
8
), pp.
1141
1158
.
21.
Barigozzi
,
G.
,
Benzoni
,
G.
,
Franchini
,
G.
, and
Perdichizzi
,
A.
,
2006
, “
Fan-Shaped Hole Effects on the Aero-Thermal Performance of a Film-Cooled Endwall
,”
ASME J. Turbomach.
,
128
(
1
), pp.
43
51
.
22.
Oldfield
,
M. L. G.
,
2008
, “
Impulse Response Processing of Transient Heat Transfer Gauge Signals
,”
ASME J. Turbomach.
,
130
(
2
), p.
021023
.
23.
O'Dowd
,
D.
,
Zhang
,
Q.
,
He
,
L.
,
Ligrani
,
P. M.
, and
Friedrichs
,
S.
,
2011
, “
Comparison of Heat Transfer Measurement Techniques on a Transonic Turbine Blade Tip
,”
ASME J. Turbomach.
,
133
(
2
), p.
021028
.
24.
Anthony
,
R. J.
,
Oldfield
,
M. L. G.
,
Jones
,
T. V.
, and
LaGraff
,
J. E.
,
1999
, “
Development of High-Density Arrays of Thin Film Heat Transfer Gauges
,”
ASME
Paper No. AJTE99-6159.
25.
Kline
,
S. J.
, and
McClintock
,
F. A.
,
1953
, “
Describing Uncertainties in Single Sample Experiments
,”
Mech. Eng.
,
75
, pp.
3
8
.
26.
Moffat
,
R. J.
,
1988
, “
Describing the Uncertainties in Experimental Results
,”
Exp. Therm. Fluid Sci.
,
1
(
1
), pp.
3
17
.
You do not currently have access to this content.