Changes in loss generation associated with altering rotor tip blade loading of an embedded rotor–stator compressor stage are assessed with unsteady three-dimensional computations, complemented by control volume analyses. Tip-fore-loaded and tip-aft-loaded rotor blades are designed to provide variation in rotor tip blade loading distributions for determining a compressor design hypothesis that aft-loading a rotor blade tip yields a reduction in loss generation in a stage environment. Aft-loading a rotor blade tip delays the formation of tip leakage flow, resulting in a relatively less mixed-out tip leakage flow at the rotor outlet and a reduction in overall tip leakage mass flow, hence a lower loss generation. However, the attendant changes in tip flow angle distribution are such that there is an overall increase in the flow angle mismatch between tip flow and main flow, leading to higher loss generation. The latter outweighs the former; therefore, rotor passage loss from aft-loading a rotor tip is higher unless a constraint is imposed on tip flow angle distribution so that the associated induced loss is negligible. Tip leakage flow, which is not mixed-out at the rotor outlet, is recovered in the downstream stator. The tip leakage flow recovery process yields a higher benefit for a relatively less mixed-out tip leakage flow in the tip-aft-loaded rotor blades on a time-averaged basis. These characterizing parameters together determine the attendant overall loss associated with rotor tip leakage flow in a compressor stage environment. The revised design hypothesis is thus as follows: A rotor should be tip-aft-loaded and hub-fore-loaded while a stator should be hub-aft-loaded and tip-fore-loaded with tip/hub leakage flow angle distribution such that it results in no additional loss. For the compressor stage being assessed here, an estimated 0.15 points enhancement in stage efficiency is possible from aft-loading rotor tip only.

References

References
1.
Cumpsty
,
N. A.
,
1989
,
Compressor Aerodynamics
,
Longmans
,
Green, NY
.
2.
Denton
,
J. D.
,
1993
, “
Loss Mechanisms in Turbomachinery
,”
ASME J. Turbomach.
,
115
(
4
), pp.
621
655
.
3.
Williams
,
R.
,
Gregory-Smith
,
D.
,
He
,
L.
, and
Ingram
,
G.
,
2010
, “
Experiments and Computations on Large Tip Clearance Effects in a Linear Cascade
,”
ASME J. Turbomach.
,
132
(
2
), p.
021018
.
4.
Storer
,
J. A.
, and
Cumpsty
,
N. A.
,
1991
, “
Tip Leakage Flow in Axial Compressors
,”
ASME J. Turbomach.
,
113
(
2
), pp.
252
259
.
5.
Yoon
,
Y. S.
,
Song
,
S. J.
, and
Shin
,
H.-W.
,
2006
, “
Influence of Flow Coefficient, Stagger Angle, and Tip Clearance on Tip Vortex in Axial Compressors
,”
ASME J. Fluids Eng.
,
128
(
6
), pp.
1274
1280
.
6.
Bae
,
J.
,
Breuer
,
K. S.
, and
Tan
,
C. S.
,
2004
, “
Periodic Unsteadiness of Compressor Tip Clearance Vortex
,”
ASME
Paper No. GT2004-53015.
7.
Deng
,
X.
,
Zhang
,
H.
,
Chen
,
J.
, and
Huang
,
W.
,
2005
, “
Unsteady Tip Clearance Flow in a Low-Speed Axial Compressor Rotor With Upstream and Downstream Stators
,”
ASME
Paper No. GT2005-68571.
8.
Taghavi-Zenouz
,
R.
, and
Eslami
,
S.
,
2012
, “
Numerical Simulation of Unsteady Tip Clearance Flow in an Isolated Axial Compressor Rotor Blades Row
,”
Proc. Inst. Mech. Eng., Part C
,
226
(
1
), pp.
82
93
.
9.
Zhang
,
H.
,
Deng
,
X.
,
Lin
,
F.
,
Chen
,
J.
, and
Huang
,
W.
,
2006
, “
A Study on the Mechanism of Tip Leakage Flow Unsteadiness in an Isolated Compressor Rotor
,”
ASME
Paper No. GT2006-91123.
10.
Hwang
,
Y.
,
Kang
,
S.-H.
, and
Lee
,
S.
,
2010
, “
Numerical Study on Unsteadiness of Tip Clearance Flow Induced by Downstream Stator Row in Axial Compressor
,”
ASME
Paper No. GT2010-23024.
11.
Smith
,
L. H.
,
1966
, “
Wake Dispersion in Turbomachines
,”
ASME J. Basic Eng.
,
88
(
3
), pp.
688
690
.
12.
Van Zante
,
D. E.
,
Adamczyk
,
J. J.
,
Strazisar
,
A. J.
, and
Okiishi
,
T. H.
,
2002
, “
Wake Recovery Performance Benefit in a High-Speed Axial Compressor
,”
ASME J. Turbomach.
,
124
(
2
), pp.
275
284
.
13.
Valkov
,
T. V.
, and
Tan
,
C. S.
,
1999
, “
Effect of Upstream Rotor Vortical Disturbances on the Time-Averaged Performance of Axial Compressor Stators: Part 2—Rotor Tip Vortex/Streamwise Vortex–Stator Blade Interactions
,”
ASME J. Turbomach.
,
121
(
3
), pp.
387
397
.
14.
Valkov
,
T. V.
, and
Tan
,
C. S.
,
1999
, “
Effect of Upstream Rotor Vortical Disturbances on the Time-Averaged Performance of Axial Compressor Stators: Part 1—Framework of Technical Approach and Wake–Stator Blade Interactions
,”
ASME J. Turbomach.
,
121
(
3
), pp.
377
386
.
15.
Gallimore
,
S. J.
,
Bolger
,
J. J.
,
Cumpsty
,
N. A.
,
Taylor
,
M. J.
,
Wright
,
P. I.
, and
Place
,
J. M. M.
,
2002
, “
The Use of Sweep and Dihedral in Multistage Axial Flow Compressor Blading—Part I: University Research and Methods Development
,”
ASME J. Turbomach.
,
124
(
4
), pp.
521
532
.
16.
Gallimore
,
S. J.
,
Bolger
,
J. J.
,
Cumpsty
,
N. A.
,
Taylor
,
M. J.
,
Wright
,
P. I.
, and
Place
,
J. M. M.
,
2002
, “
The Use of Sweep and Dihedral in Multistage Axial Flow Compressor Blading—Part II: Low and High-Speed Designs and Test Verification
,”
ASME J. Turbomach.
,
124
(
4
), pp.
533
541
.
17.
Büche
,
D.
,
Guidati
,
G.
, and
Stoll
,
P.
,
2003
, “
Automated Design Optimization of Compressor Blades for Stationary, Large-Scale Turbomachinery
,”
ASME
Paper No. GT2003-38421.
18.
Seshadri
,
P.
,
Shahpar
,
S.
, and
Parks
,
G. T.
,
2014
, “
Robust Compressor Blades for Desensitizing Operational Tip Clearance Variations
,”
ASME
Paper No. GT2014-26624.
19.
Sakulkaew
,
S.
,
Tan
,
C. S.
,
Donahoo
,
E.
,
Cornelius
,
C.
, and
Montgomery
,
M.
,
2013
, “
Compressor Efficiency Variation With Rotor Tip Gap From Vanishing to Large Clearance
,”
ASME J. Turbomach.
,
135
(
3
), p.
031030
.
20.
Wisler
,
D. C.
,
1985
, “
Loss Reduction in Axial-Flow Compressors Through Low-Speed Model Testing
,”
ASME J. Eng. Gas Turbines Power
,
107
(
2
), pp.
354
363
.
21.
Langtry
,
R. B.
,
Menter
,
F. R.
,
Likki
,
S. R.
,
Suzen
,
Y. B.
,
Huang
,
P. G.
, and
Völker
,
S.
,
2006
, “
A Correlation-Based Transition Model Using Local Variables—Part II: Test Cases and Industrial Applications
,”
ASME J. Turbomach.
,
128
(
3
), pp.
423
434
.
22.
Cornelius
,
C.
,
Biesinger
,
T.
,
Galpin
,
P.
, and
Braune
,
A.
,
2013
, “
Experimental and Computational Analysis of a Multistage Axial Compressor Including Stall Prediction by Steady and Transient CFD Methods
,”
ASME J. Turbomach.
,
136
(
6
), p.
061013
.
23.
Adamczyk
,
J. J.
,
2000
, “
Aerodynamic Analysis of Multistage Turbomachinery Flows in Support of Aerodynamic Design
,”
ASME J. Turbomach.
,
122
(
2
), pp.
189
217
.
24.
Kulkarni
,
S.
,
2011
, “
Development of a Methodology to Estimate Aero-Performance and Aero-Operability Limits of a Multistage Axial Flow Compressor for Use in Preliminary Design
,”
Master's thesis
, Case Western Reserve University, Cleveland, OH.https://etd.ohiolink.edu/ap/10?0::NO:10:P10_ACCESSION_NUM:case1321453240
25.
Zlatinov
,
M. B.
,
Tan
,
C. S.
,
Montgomery
,
M.
,
Islam
,
T.
, and
Harris
,
M.
,
2012
, “
Turbine Hub and Shroud Sealing Flow Loss Mechanisms
,”
ASME J. Turbomach.
,
134
(
6
), p.
061027
.
26.
Belamri
,
T.
,
Galpin
,
P.
,
Braune
,
A.
, and
Cornelius
,
C.
,
2005
, “
CFD Analysis of a 15 Stage Axial Compressor: Part I—Methods
,”
ASME
Paper No. GT2005-68261.
27.
Mailach
,
R.
,
Sauer
,
H.
, and
Vogeler
,
K.
,
2001
, “
The Periodical Interaction of the Tip Clearance Flow in the Blade Rows of Axial Compressors
,”
ASME
Paper No. 2001-GT-0299.
28.
Zhang
,
H.
,
Deng
,
X.
,
Chen
,
J.
, and
Huang
,
W.
,
2005
, “
Unsteady Tip Clearance Flow in an Isolated Axial Compressor Rotor
,”
J. Therm. Sci.
,
14
(
3
), pp.
211
219
.
29.
Tiralap
,
A.
,
2015
, “
Effects of Rotor Tip Blade Loading Variation on Compressor Stage Performance
,”
Master's thesis
, Massachusetts Institute of Technology, Cambridge, MA.https://dspace.mit.edu/handle/1721.1/97857
30.
Prasad
,
A.
,
2005
, “
Calculation of the Mixed-Out State in Turbomachine Flows
,”
ASME J. Turbomach.
,
127
(
3
), pp.
564
572
.
31.
Young
,
J. B.
, and
Wilcock
,
R. C.
,
2002
, “
Modeling the Air-Cooled Gas Turbine: Part 2—Coolant Flows and Losses
,”
ASME J. Turbomach.
,
124
(
2
), pp.
214
221
.
32.
Khalid
,
S. A.
,
1995
, “
The Effects of Tip Clearance on Axial Compressor Pressure Rise
,”
Ph.D. thesis
, Massachusetts Institute of Technology, Cambridge, MA.https://dspace.mit.edu/handle/1721.1/11774
You do not currently have access to this content.