Airborne particles ingested in aircraft engines deposit on compressor blading and end walls. Aerodynamic surfaces degrade on a microscopic and macroscopic scale. Blade row, compressor, and engine performance deteriorate. Optimization of maintenance scheduling to mitigate these effects requires modeling of the deterioration process. This work provides a deterioration model on blade row level and the experimental validation of this model in a newly designed deposition test rig. When reviewing previously published work, a clear focus on deposition effects in industrial gas turbines becomes evident. The present work focuses on quantifying magnitudes and timescales of deposition effects in aircraft engines and the adaptation of the generalized Kern and Seaton deposition model for application in axial compressor blade rows. The test rig's cascade was designed to be representative of aircraft engine compressor blading. The cascade was exposed to an accelerated deposition process. Reproducible deposition patterns were identified. Results showed an asymptotic progression of blade row performance deterioration. A significant increase in total pressure loss and decrease in static pressure rise were measured. Application of the validated model using existing particle concentration and flight cycle data showed that more than 95% of the performance deterioration due to deposition occurs within the first 1000 flight cycles.

References

References
1.
Upton
,
A. W. J.
,
1974
, “
Axial Flow Compressors and Turbine Blade Fouling: Some Causes, Effects, and Cleaning Methods
,”
NRCC Symposium on Gas Turbine Operations and Maintenance
, Edmonton, AB, Canada, Oct. 21–23, pp.
273
278
.
2.
Meher-Homji
,
C. B.
,
1992
, “
Gas Turbine Axial Compressor Fouling: A United Treatment of Its Effects, Detection, and Control
,”
Int. J. Turbo Jet Eng.
,
9
(
4
), pp.
311
334
.
3.
Diakunchak
,
I. S.
,
1992
, “
Performance Deterioration in Industrial Gas Turbines
,”
ASME J. Eng. Gas Turbines Power
,
114
(
2
), pp.
161
168
.
4.
Sallee
,
G. P.
,
1978
, “
Performance Deterioration Based on Existing (Historical) Data: JT9D Diagnostics Program
,” National Aeronautics and Space Administration, Washington, DC,
Technical Report No. CR-135448
.https://ntrs.nasa.gov/search.jsp?R=19800013837
5.
Kramer
,
W. H.
, and
Smith
,
J. J.
,
1978
, “
Long-Term CF6 Engine Performance Deterioration: Evaluation of Engine S/N 451-380
,” National Aeronautics and Space Administration, Washington, DC,
Technical Report No. CR-159390
.https://ntrs.nasa.gov/search.jsp?R=19780021160
6.
Richardson
,
J. H.
,
Sallee
,
G. P.
, and
Smakula
,
F. K.
,
1979
, “
Causes of High Pressure Compressor Deterioration in Service
,”
AIAA
Paper No. 79-1234.
7.
Ziemianski
,
J. A.
, and
Mehalic
,
C. M.
,
1980
, “
Investigation of Performance Deterioration of the CF6/JT9D High-Bypass Ratio Turbofan Engines
,” National Aeronautics and Space Administration, Washington, DC,
Technical Report No. TM-81552
.https://ntrs.nasa.gov/search.jsp?R=19800020831
8.
Brittain
,
D.
,
1983
, “
Cleaning Gas Turbine Compressors
,”
Aircraft Eng. Aerospace Technol.
,
55
(
1
), pp.
15
17
.
9.
Kurz
,
R.
, and
Brun
,
K.
,
2012
, “
Fouling Mechanisms in Axial Compressors
,”
ASME J. Eng. Gas Turbines Power
,
134
(
3
), p.
032401
.
10.
Tarabrin
,
A. P.
,
Schurovsky
,
V. A.
,
Bodrov
,
A. I.
, and
Stalder
,
J.-P.
,
1998
, “
Influence of Axial Compressor Fouling on Gas Turbine Unit Performance Based on Different Schemes and With Different Initial Parameters
,”
ASME
Paper No. 98-GT-416.
11.
Syverud
,
E.
,
Brekke
,
O.
, and
Bakken
,
L. E.
,
2007
, “
Axial Compressor Deterioration Caused by Saltwater Ingestion
,”
ASME J. Turbomach.
,
129
(
1
), pp.
119
126
.
12.
Bammert
,
K.
, and
Milsch
,
R.
,
1972
, “
Das Verhalten der Grenzschichten an rauhen Verdichterschaufeln
,”
Forsch. Ing.-Wes.
,
38
(
4
), pp.
101
109
.
13.
Suder
,
K. L.
,
Chima
,
R. V.
,
Strazisar
,
A. J.
, and
Roberts
,
W. B.
,
1995
, “
The Effect of Adding Roughness and Thickness to a Transonic Axial Rotor
,” National Aeronautics and Space Administration, Washington, DC, Technical Report No. TM-106958.
14.
Bons
,
J. P.
,
2010
, “
A Review of Surface Roughness Effects in Gas Turbines
,”
ASME J. Turbomach.
,
132
(
2
), p.
021004
.
15.
Schlichting
,
H.
, and
Gersten
,
K.
,
2003
,
Boundary-Layer Theory
,
8th ed.
,
Springer
,
Berlin
.
16.
Bons
,
J. P.
,
Taylor
,
R. P.
,
McClain
,
S. T.
, and
Rivir
,
R. B.
,
2001
, “
The Many Faces of Turbine Surface Roughness
,”
ASME J. Turbomach.
,
123
(
4
), pp.
739
748
.
17.
Back
,
S. C.
,
Hobson
,
G. V.
,
Song
,
S. J.
, and
Millsaps
,
K. T.
,
2012
, “
Effects of Reynolds Number and Surface Roughness Magnitude and Location on Compressor Cascade Performance
,”
ASME J. Turbomach.
,
134
(
5
), p.
051013
.
18.
Gbadebo
,
S. A.
,
Hynes
,
T. P.
, and
Cumpsty
,
N. A.
,
2004
, “
Influence of Surface Roughness on Three-Dimensional Separation in Axial Compressors
,”
ASME J. Turbomach.
,
126
(
4
), pp.
455
463
.
19.
Seddigh
,
F.
, and
Saravanamuttoo
,
H. I. H.
,
1991
, “
A Proposed Method for Assessing the Susceptibility of Axial Compressors to Fouling
,”
ASME J. Eng. Gas Turbines Power
,
113
(
4
), pp.
595
600
.
20.
Cerri
,
G.
,
Salvini
,
C.
,
Procacci
,
R.
, and
Rispoli
,
F.
,
1993
, “
Fouling and Air Bleed Extracted Flow Influence on Compressor Performance
,”
ASME
Paper No. 93-GT-366.
21.
Zaita
,
A. V.
,
Buley
,
G.
, and
Karlsons
,
G.
,
1998
, “
Performance Deterioration Modeling in Aircraft Gas Turbine Engines
,”
ASME J. Eng. Gas Turbines Power
,
120
(
2
), pp.
344
349
.
22.
Song
,
T. W.
,
Kim
,
T. S.
,
Kim
,
J. H.
, and
Ro
,
S. T.
,
2001
, “
Performance Prediction of Axial Flow Compressors Using Stage Characteristics and Simultaneous Calculation of Interstage Parameters
,”
Proc. Inst. Mech. Eng., Part A
,
215
(
1
), pp.
89
98
.
23.
Spina
,
P. R.
,
2002
, “
Gas Turbine Performance Prediction by Using Generalized Performance Curves of Compressor and Turbine Stages
,”
ASME
Paper No. GT2002-30275.
24.
Melino
,
F.
,
Peretto
,
A.
, and
Spina
,
P. R.
,
2010
, “
Development and Validation of a Model for Axial Compressor Fouling Simulation
,”
ASME
Paper No. GT2010-22947.
25.
Rodríguez
,
C.
,
Sánchez
,
D.
,
Chacartegui
,
R.
,
Munoz
,
A.
, and
Martínez
,
G. S.
,
2013
, “
Compressor Fouling: A Comparison of Different Fault Distributions Using a ‘Stage-Stacking’ Technique
,”
ASME
Paper No. GT2013-94010.
26.
Tarabrin
,
A. P.
,
Schurovsky
,
V. A.
,
Bodrov
,
A. I.
, and
Stalder
,
J.-P.
,
1998
, “
An Analysis of Axial Compressor Fouling and a Blade Cleaning Method
,”
ASME J. Turbomach.
,
120
(
2
), pp.
256
261
.
27.
Song
,
T. W.
,
Sohn
,
J. L.
,
Kim
,
T. S.
,
Kim
,
J. H.
, and
Ro
,
S. T.
,
2005
, “
An Analytical Approach to Predicting Particle Deposit by Fouling in the Axial Compressor of the Industrial Gas Turbine
,”
Proc. Inst. Mech. Eng., Part A
,
219
(
3
), pp.
203
212
.
28.
El-Batsh
,
H.
, and
Haselbacher
,
H.
,
2000
, “
Effect of Turbulence Modeling on Particle Dispersion and Deposition on Compressor and Turbine Blade Surfaces
,”
ASME
Paper No. 2000-GT-0519.
29.
Borello
,
D.
,
Rispoli
,
F.
, and
Venturini
,
P.
,
2012
, “
An Integrated Particle-Tracking Impact/Adhesion Model for the Prediction of Fouling in a Subsonic Compressor
,”
ASME J. Eng. Gas Turbines Power
,
134
(
9
), p.
092002
.
30.
Suman
,
A.
,
Kurz
,
R.
,
Aldi
,
N.
,
Morini
,
M.
,
Brun
,
K.
,
Pinelli
,
M.
, and
Spina
,
P. R.
,
2015
, “
Quantitative Computational Fluid Dynamics Analyses of Particle Deposition on a Transonic Axial Compressor Blade—Part I: Particle Zones Impact
,”
ASME J. Turbomach.
,
137
(
2
), p.
021009
.
31.
Suman
,
A.
,
Morini
,
M.
,
Kurz
,
R.
,
Aldi
,
N.
,
Brun
,
K.
,
Pinelli
,
M.
, and
Spina
,
P. R.
,
2015
, “
Quantitative Computational Fluid Dynamic Analyses of Particle Deposition on a Transonic Axial Compressor Blade—Part II: Impact Kinematics and Particle Sticking Analysis
,”
ASME J. Turbomach.
,
137
(
2
), p.
021010
.
32.
Suman
,
A.
,
Morini
,
M.
,
Kurz
,
R.
,
Aldi
,
N.
,
Brun
,
K.
,
Pinelli
,
M.
, and
Spina
,
P. R.
,
2016
, “
Estimation of the Particle Deposition on a Transonic Axial Compressor Blade
,”
ASME J. Eng. Gas Turbines Power
,
138
(
1
), p.
012604
.
33.
Vigueras Zuniga
,
M. O.
,
2007
, “
Analysis of Gas Turbine Compressor Fouling and Washing on Line
,”
Ph.D. thesis
, Cranfield University, Cranfield, UK.https://dspace.lib.cranfield.ac.uk/handle/1826/2448
34.
Roupa
,
A.
,
Pilidis
,
P.
,
Allison
,
I.
, and
Lambart
,
P.
,
2013
, “
Study of Wash Fluid Cleaning Effectiveness on Industrial Gas Turbine Compressor Foulants
,”
ASME
Paper No. GT2013-94510.
35.
Igie
,
U.
,
Pilidis
,
P.
,
Fouias
,
D.
,
Ramsden
,
K.
, and
Laskaridis
,
P.
,
2014
, “
Industrial Gas Turbine Performance: Compressor Fouling and On-Line Washing
,”
ASME J. Turbomach.
,
136
(
10
), p.
101001
.
36.
Epstein
,
N.
,
1983
, “
Thinking About Heat Transfer Fouling: A 5 × 5 Matrix
,”
Heat Transfer Eng.
,
4
(
1
), pp.
43
56
.
37.
Epstein
,
N.
,
1997
, “
Elements of Particle Deposition Onto Nonporous Solid Surfaces Parallel to Suspension Flows
,”
Exp. Therm. Fluid Sci.
,
14
(
4
), pp.
323
334
.
38.
Kern
,
D. O.
, and
Seaton
,
R. E.
,
1959
, “
A Theoretical Analysis of Thermal Surface Fouling
,”
Br. Chem. Eng.
,
4
(
5
), pp.
258
262
.
39.
Theerachaisupakij
,
W.
,
Matsusaka
,
S.
,
Akashi
,
Y.
, and
Masuda
,
H.
,
2003
, “
Reentrainment of Deposited Particles by Drag and Aerosol Collision
,”
J. Aerosol Sci.
,
34
(
3
), pp.
261
274
.
40.
Müller-Steinhagen
,
H.
,
2011
, “
Heat Transfer Fouling: 50 Years After the Kern and Seaton Model
,”
Heat Transfer Eng.
,
32
(
1
), pp.
1
13
.
41.
Roach
,
P. E.
,
1987
, “
The Generation of Nearly Isotropic Turbulence by Means of Grids
,”
Int. J. Heat Fluid Flow
,
8
(
2
), pp.
82
92
.
42.
Verein Deutscher Ingenieure e.V.
,
1989
, “
Generation of Test Aerosols From Powders Using a Belt Feed Unit
,” Beuth, Berlin, Germany, Standard No. VDI 3491-8.
43.
Hirsch
,
C.
,
1993
, “
Advanced Methods for Cascade Testing
,” Advisory Group for Aerospace Research and Development, Neuilly-sur-Seine, France,
Technical Report No. AGARD-AG-328
.http://adsabs.harvard.edu/abs/1993STIN...9415119H
44.
Abbott
,
I. H.
,
von Doenhoff
,
A. E.
, and
Stivers
,
L. S.
,
1945
, “
Summary of Airfoil Data
,” National Advisory Committee for Aeronautics, Washington, DC,
Technical Report No. 824
.https://ntrs.nasa.gov/search.jsp?R=19930090976
45.
Grieb
,
H.
,
2009
,
Verdichter für Turbo-Flugtriebwerke
,
Springer
,
Berlin
.
46.
Cumpsty
,
N. A.
,
2004
,
Compressor Aerodynamics
,
Reprint ed.
,
Krieger
,
Malabar, FL
.
47.
Hergt
,
A.
,
Meyer
,
R.
, and
Engel
,
K.
,
2006
, “
Experimental Investigation of Flow Control in Compressor Cascades
,”
ASME
Paper No. GT2006-90415.
48.
Lieblein
,
S.
,
1960
, “
Incidence and Deviation-Angle Correlations for Compressor Cascades
,”
ASME J. Basic Eng.
,
82
(
3
), pp.
575
584
.
49.
Naeem
,
M.
,
Singh
,
R.
, and
Probert
,
D.
,
2001
, “
Consequences of Aero-Engine Deteriorations for Military Aircraft
,”
Appl. Energy
,
70
(
2
), pp.
103
133
.
50.
Leipold
,
R.
,
Boese
,
M.
, and
Fottner
,
L.
,
2000
, “
The Influence of Technical Surface Roughness Caused by Precision Forging on the Flow Around a Highly Loaded Compressor Cascade
,”
ASME J. Turbomach.
,
122
(
3
), pp.
416
424
.
51.
Deutsches Institut für Normung e.V.
,
1997
, “
Normatmosphäre
,” Beuth, Berlin, Germany, Standard No. DIN ISO 2533.
52.
International Organization for Standardization
,
1997
, “
Road Vehicles—Test Dust for Filter Evaluation—Part 1: Arizona Test Dust
,” Beuth, Berlin, Germany, Standard No. ISO 12103-1.
53.
El-Batsh
,
H.
,
2001
, “
Modeling Particle Deposition on Compressor and Turbine Blade Surfaces
,”
Ph.D. thesis
, Vienna University of Technology, Vienna, Austria.http://s3.amazonaws.com/academia.edu.documents/36791705/3.pdf?AWSAccessKeyId=AKIAJ56TQJRTWSMTNPEA&Expires=1478199825&Signature=vlgSzd8zciNucoE5nWhswOzQz0Q%3D&response-content-disposition=inline%3B%20filename%3D3.pdf
54.
Meher-Homji
,
C. B.
,
Chaker
,
M.
, and
Bromley
,
A. F.
,
2009
, “
The Fouling of Axial Flow Compressors: Causes, Effects, Susceptibility, and Sensitivity
,”
ASME
Paper No. GT2009-59239.
55.
Amato
,
F.
,
Moreno
,
T.
,
Pandolfi
,
M.
,
Querol
,
X.
,
Alastuey
,
A.
,
Delgado
,
A.
,
Pedrero
,
M.
, and
Cots
,
N.
,
2010
, “
Concentrations, Sources and Geochemistry of Airborne Particulate Matter at a Major European Airport
,”
J. Environ. Monit.
,
12
(
4
), pp.
854
862
.
56.
ICAO
,
2011
,
Airport Air Quality Manual
,
1st ed.
,
International Civil Aviation Organization
,
Montréal, QC, Canada
.
57.
Eurocontrol
,
2015
, “
Taxi-In Times: Summer 2015
,” Eurocontrol, Brussels, Belgium, accessed May 19, 2016, http://www.eurocontrol.int/sites/default/files/content/documents/official-documents/facts-and-figures/coda-reports/taxi-in-times-s15.xlsx
58.
Eurocontrol
,
2015
, “
Taxi-Out Times: Summer 2015
,” Eurocontrol, Brussels, Belgium, accessed May 19, 2016, http://www.eurocontrol.int/sites/default/files/content/documents/official-documents/facts-and-figures/coda-reports/taxi-out-times-s15.xlsx
You do not currently have access to this content.