The flow field inside a triangular cooling channel for the leading edge of a gas turbine blade has been investigated. The efforts were focused on the investigation of the interaction between effects of rotation, of buoyancy forces, and those induced by turbulence promoters, i.e., perpendicular square ribs placed on both leading and trailing sides of the duct. Particle image velocimetry (PIV) and stereo-PIV measurements have been performed for ReDh = 104, rotation number of 0, 0.2, and 0.6, and buoyancy parameter equal to 0, 0.08, and 0.7. Coriolis secondary flows are detected in the duct cross section, but contrary to the smooth case, they are characterized by a single main vortex and are less affected by an increase of the rotation parameter. Moreover, their main topology is only marginally sensitive to the buoyancy forces. Conversely, the features of the recirculation structure downstream the ribs turned out to be more sensitive to both the buoyancy forces and to the stabilizing/destabilizing effect on the separated shear layer induced by rotation.

References

References
1.
Johnston
,
J. P.
,
Halleen
,
R. P.
, and
Lezius
,
D. K.
,
1972
, “
Effects of Spanwise Rotation on the Structure of Two-Dimensional Fully Developed Turbulent Channel Flow
,”
J. Fluid Mech.
,
56
(
03
), pp.
533
557
.
2.
Morris
,
W. D.
, and
Ayhan
,
T.
,
1979
, “
Observation on the Influence of Rotation on Heat Transfer in the Coolant Channel of Gas Turbine Rotor Blade
,”
Proc. Inst. Mech. Eng.
,
193
(
1979
), pp.
303
311
.
3.
Speziale
,
C. G.
, and
Thangam
,
S.
,
1983
, “
Numerical Study of Secondary Flows and Roll-Cell Instabilities in Rotating Channel Flow
,”
J. Fluid Mech.
,
130
, pp.
377
395
.
4.
Coletti
,
F.
,
Maurer
,
T.
,
Arts
,
T.
, and
Di Sante
,
A.
,
2012
, “
Flow Field Investigation in Rotating Rib-Roughened Channel by Means of Particle Image Velocimetry
,”
Exp. Fluids
,
52
(
4
), pp.
1043
1061
.
5.
Pascotto
,
M.
,
Armellini
,
A.
,
Mucignat
,
C.
, and
Casarsa
,
L.
,
2014
, “
Coriolis Effects on the Flow Field Inside a Rotating Triangular Channel for Leading Edge Cooling
,”
ASME J. Turbomach.
,
136
(
3
), p.
031019
.
6.
Armellini
,
A.
,
Mucignat
,
C.
, and
Casarsa
,
L.
,
2011
, “
Flow Field Analysis Inside a Gas Turbine Trailing Edge Cooling Channel Under Static and Rotating Conditions
,”
Int. J. Heat Fluid Flow
,
32
(
6
), pp.
1147
1159
.
7.
Mucignat
,
C.
,
Armellini
,
A.
, and
Casarsa
,
L.
,
2013
, “
Flow Field Analysis Inside a Gas Turbine Trailing Edge Cooling Channel Under Static and Rotating Conditions: Effect of Ribs
,”
Int. J. Heat Fluid Flow
,
42
, pp.
236
250
.
8.
Elfert
,
M.
,
Schroll
,
M.
, and
Förster
,
W.
,
2012
, “
PIV Measurement of Secondary Flow in a Rotating Two-Pass Cooling System With an Improved Sequencer Technique
,”
ASME J. Turbomach.
,
134
(
3
), p.
031001
.
9.
Lei
,
J.
,
Li
,
S.-J.
,
Han
,
J.-C.
,
Zhang
,
L.
, and
Moon
,
H.-K.
,
2014
, “
Effect of a Turning Vane on Heat Transfer in Rotating Multipass Rectangular Smooth Channel
,”
J. Thermophys. Heat Transfer
,
28
(
3
), pp.
417
427
.
10.
Coletti
,
F.
,
Lo Jacono
,
D.
,
Cresci
,
I.
, and
Arts
,
T.
,
2014
, “
Turbulent Flow in Rib-Roughened Channel Under the Effect of Coriolis and Rotational Buoyancy Forces
,”
Phys. Fluids
,
26
(
4
), p.
045111
.
11.
Domaschke
,
N.
,
von Wolfersdorf
,
J.
, and
Semmler
,
K.
,
2012
, “
Heat Transfer and Pressure Drop Measurements in a Rib Roughened Leading Edge Cooling Channel
,”
ASME J. Turbomach.
,
134
(
6
), p.
061006
.
12.
Andrei
,
L.
,
Carcasci
,
C.
,
Da Soghe
,
R.
,
Facchini
,
B.
,
Maiuolo
,
F.
,
Tarchi
,
L.
, and
Zecchi
,
S.
,
2013
, “
Heat Transfer Measurements in a Leading Edge Geometry With Racetrack Holes and Film Cooling Extraction
,”
ASME J. Turbomach.
,
135
(
3
), p.
031020
.
13.
Liu
,
Y. H.
,
Huh
,
M.
,
Rhee
,
D. H.
,
Han
,
J. C.
, and
Moon
,
H. K. K.
,
2009
, “
Heat Transfer in Leading Edge, Triangular Shaped Cooling Channels With Angled Ribs Under High Rotation Numbers
,”
ASME J. Turbomach.
,
131
(
4
), p.
041017
.
14.
Liu
,
Y. H.
,
Huh
,
M.
,
Han
,
J. C.
, and
Moon
,
H. K.
,
2010
, “
High Rotation Number Effect on Heat Transfer in a Triangular Channel With 45 Deg, Inverted 45 Deg, and 90 Deg Ribs
,”
ASME J. Heat Transfer
,
132
(
7
), p.
071702
.
15.
Willert
,
C.
,
1997
, “
Stereoscopic Digital Particle Image Velocimetry for Application in Wind Tunnel Flows
,”
Meas. Sci. Technol.
,
8
(
12
), pp.
1465
1497
.
16.
Armellini
,
A.
,
Mucignat
,
C.
,
Casarsa
,
L.
, and
Giannattasio
,
P.
,
2012
, “
Flow Field Investigations in Rotating Facilities by Means of Stationary PIV Systems
,”
Meas. Sci. Technol.
,
23
(
2
), p.
025302
.
17.
Rau
,
G.
,
Moeller
,
D.
,
Cakan
,
M.
, and
Arts
,
T.
,
1998
, “
The Effect of Periodic Ribs on the Local Aerodynamic and Heat Transfer Performance of a Straight Cooling Channel
,”
ASME J. Turbomach.
,
120
(
2
), pp.
368
375
.
You do not currently have access to this content.