The continuing maturation of metal laser-sintering technology (direct metal laser sintering (DMLS)) presents the opportunity to derisk the engine design process by experimentally down-selecting high-pressure nozzle guide vane (HPNGV) cooling designs using laboratory tests of laser-sintered—instead of cast—parts to assess thermal performance. Such tests could be seen as supplementary to thermal-paint test engines, which are used during certification to validate cooling system designs. In this paper, we compare conventionally cast and laser-sintered titanium alloy parts in back-to-back experimental tests at engine-representative conditions over a range of coolant mass flow rates. Tests were performed in the University of Oxford Annular Sector Heat Transfer Facility. The thermal performance of the cast and laser-sintered parts—measured using new infrared processing techniques—is shown to be very similar, demonstrating the utility of laser-sintered parts for preliminary engine thermal assessments. We conclude that the methods reported in this paper are sufficiently mature to make assessments which could influence engine development programs.

References

References
1.
Glezer
,
B.
,
2003
, “
Selection of a Gas Turbine Cooling System
,”
Handbook of Turbomachinery
,
2nd ed.
, Marcel Dekker, New York.
2.
Soares
,
C.
,
2015
,
Gas Turbines: A Handbook of Air, Land and Sea Applications
,
2nd ed.
, Butterworth-Heinemann, Oxford, UK.
3.
Luque
,
S.
,
Batstone
,
J.
,
Gillespie
,
D. R. H.
,
Povey
,
T.
, and
Romero
,
E.
,
2013
, “
Full Thermal Experimental Assessment of a Dendritic Turbine Vane Cooling Scheme
,”
ASME J. Turbomach.
,
136
(
2
), p.
021011
.
4.
Kirollos
,
B.
, and
Povey
,
T.
,
2014
, “
Reverse-Pass Cooling Systems for Improved Performance
,”
ASME J. Turbomach.
,
136
(
11
), p.
111004
.
5.
Snyder
,
J. C.
,
Stimpson
,
C. K.
,
Thole
,
K. A.
, and
Mongillo
,
D.
,
2016
, “
Build Direction Effects on Additively Manufactured Channels
,”
ASME J. Turbomach.
,
138
(
5
), p.
051006
.
6.
Stimpson
,
C. K.
,
Snyder
,
J. C.
,
Thole
,
K. A.
, and
Mongillo
,
D.
,
2016
, “
Roughness Effects on Flow and Heat Transfer for Additively Manufactured Channels
,”
ASME J. Turbomach.
,
138
(
5
), p.
051008
.
7.
Boyer
,
R.
,
Welsch
,
G.
, and
Collings
,
E. W.
,
1994
,
Materials Properties Handbook: Titanium Alloys
,
ASM International
,
Materials Park, OH
.
8.
Zielińska
,
M.
,
Yavorska
,
M.
,
Poręba
,
M.
, and
Sieniawski
,
J.
,
2010
, “
Thermal Properties of Cast Nickel Based Superalloys
,”
Arch. Mater. Sci. Eng.
,
44
(
1
), pp.
35
38
.
9.
Kirollos
,
B.
, and
Povey
,
T.
,
2016
, “
Cooling Optimization Theory—Part I: Optimum Wall Temperature, Coolant Exit Temperature and the Effect of Wall/Film Properties on Performance
,”
ASME J. Turbomach.
,
138
(
8
), p.
081002
.
10.
Batstone
,
J.
,
2011
, “
Dendritic Cooling for Nozzle Guide Vanes
,” Ph.D. thesis, Department of Engineering Science, University of Oxford, Oxford, UK.
11.
Povey
,
T.
,
Sharpe
,
M.
, and
Rawlinson
,
A.
,
2011
, “
Experimental Measurements of Gas Turbine Flow Capacity Using a Novel Transient Technique
,”
ASME J. Turbomach.
,
133
(
1
), p.
011005
.
12.
Kirollos
,
B.
, and
Povey
,
T.
,
2016
, “
Cooling Optimization Theory—Part II: Optimum Internal Heat Transfer Coefficient Distribution
,”
ASME J. Turbomach.
,
138
(
8
), p.
081003
.
13.
Armstrong
,
J.
, and
Winstanley
,
D.
,
1988
, “
A Review of Staggered Array Pin Fin Heat Transfer for Turbine Cooling Applications
,”
ASME J. Turbomach.
,
110
(
1
), pp.
94
103
.
14.
Luque
,
S.
, and
Povey
,
T.
,
2011
, “
A Novel Technique for Assessing Turbine Cooling System Performance
,”
ASME J. Turbomach.
,
133
(
3
), p.
031013
.
15.
Luque
,
S.
,
Aubry
,
J.
, and
Povey
,
T.
,
2009
, “
A New Engine-Parts Annular Sector Cascade to Prove NGV Cooling Systems
,”
8th European Conference on Turbomachinery, Fluid Dynamics and Thermodynamics, Verlag der Technischen Universtat Graz, Graz
, Austria, Mar. 23–27, pp.
865
878
.
16.
Roach
,
P. E.
,
1987
, “
The Generation of Nearly Isotropic Turbulence by Means of Grids
,”
Int. J. Heat Fluid Flow
,
8
(
2
), pp.
82
92
.
17.
Ding
,
K.
,
1985
, “
Test of Jet Engine Turbine Blades by Thermography
,”
Opt. Eng.
,
24
(
6
), pp.
1055
1059
.
18.
Luque Martinez
,
S. G.
,
2011
, “
A Fully-Integrated Approach to Gas Turbine Cooling System Research
,”
Ph.D. thesis
, University of Oxford, Oxford, UK.
19.
Lawson
,
S. A.
,
Straub
,
D. L.
,
Beer
,
S.
,
Casleton
,
K. H.
, and
Sidwell
,
T.
,
2013
, “
Direct Measurements of Overall Effectiveness and Heat Flux on a Film Cooled Test Article at High Temperatures and Pressures
,”
ASME
Paper No. GT2013-94685.
20.
FLIR
,
2012
, “
User’s Manual: FLIR R&D Software 3.3
,” FLIR System, Inc., Wilsonville, OR, Publication No. T559132.
21.
Kwor
,
E. T.
, and
Simone
,
M.
,
2001
, “
Emissivity Measurements for Nextel Velvet Coating 811-21 Between −36 °C and 82 °C
,”
High Temp.-High Pressures
,
33
(
5
), pp.
551
556
.
22.
FLIR
,
2012
, “
The Ultimate Infrared Handbook for R&D Professionals
,” FLIR System, Inc., Wilsonville, OR, Publication No. T559243.
23.
FLIR
,
2014
, “
FLIR Systems Thermography Product Catalog 2014
,” FLIR System, Inc., Wilsonville, OR, Publication No. T559480.
24.
Sweeney
,
P. C.
, and
Rhodes
,
J. F.
,
2000
, “
An Infrared Technique for Evaluating Turbine Airfoil Cooling Designs
,”
ASME J. Turbomach.
,
122
(
1
), pp.
170
177
.
25.
Eckert
,
E. R. G.
, and
Drake
,
R. M.
,
1972
,
Analysis of Heat and Mass Transfer
,
McGraw-Hill
,
New York
.
26.
Horlock
,
J. H.
,
Watson
,
D. T.
, and
Jones
,
T. V.
,
2001
, “
Limitations on Gas Turbine Performance Imposed by Large Turbine Cooling Flows
,”
ASME J. Eng. Gas Turbines Power
,
123
(
3
), pp.
487
494
.
27.
Thomas
,
M.
,
Kirollos
,
B.
,
Jackson
,
D.
, and
Povey
,
T.
,
2013
, “
Experimental and CFD Studies of NGV Endwall Cooling
,”
ASME
Paper No. GT2013-95639.
28.
Sieder
,
E. N.
, and
Tate
,
G. E.
,
1936
, “
Heat Transfer and Pressure Drops of Liquids in Tubes
,”
Ind. Eng. Chem.
,
28
(
12
), pp.
1429
1435
.
You do not currently have access to this content.