This study comprehensively illustrates the effect of Reynolds number, hole spacing, jet-to-target distance, and hole inclination on the convective heat transfer performance of an impinging jet array. Spatially resolved target surface heat transfer coefficient distributions are measured using transient liquid crystal (TLC) measurement techniques, over a range of Reynolds numbers from 5000 to 25,000. Considered are effects of streamwise and spanwise jet-to-jet spacing (X/D, Y/D: 4–8) and jet-to-target plate distance (Z/D: 0.75–3). Overall, a test matrix of 36 different configurations is employed. In addition, the effect of hole inclination (θ: 0–40 deg) on the heat transfer coefficient is investigated. Optimal hole spacing arrangements and impingement distance are pointed out to maximize the area-averaged Nusselt number and minimize the amount of cooling air. Also included is a new correlation, based on that of Florschuetz et al., to predict row-averaged Nusselt number. The new correlation is capable to cover low Z/D ∼ 0.75 and presents better prediction of row-averaged Nusselt number, which proves to be an effective impingement design tool.

References

References
1.
Ligrani
,
P.
,
2013
, “
Heat Transfer Augmentation Technologies for Internal Cooling of Turbine Components of Gas Turbine Engines
,”
Int. J. Rotating Mach.
,
2013
(
3
), p. 275653.
2.
Bunker
,
R. S.
,
Bailey
,
J. C.
,
Lee
,
C.-P.
, and
Stevens
,
C. W.
,
2004
, “
In-Wall Network (Mesh) Cooling Augmentation of Gas Turbine Airfoils
,”
ASME
Paper No. GT2004-54260.
3.
Chyu
,
M. K.
, and
Alvin
,
M. A.
,
2010
, “
Turbine Airfoil Aerothermal Characteristics in Future Coal–Gas-Based Power Generation Systems
,”
Heat Transfer Res.
,
41
(
7
), pp.
737
752
.
4.
Chambers
,
A. C.
,
Gillespie
,
D. R. H.
,
Ireland
,
P. T.
, and
Dailey
,
G. M.
,
2005
, “
The Effect of Initial Cross Flow on the Cooling Performance of a Narrow Impingement Channel
,”
ASME J. Heat Transfer
,
127
(
4
), pp.
358
365
.
5.
Weigand
,
B.
, and
Spring
,
S.
,
2011
, “
Multiple Jet Impingement—A Review
,”
Heat Transfer Res.
,
42
(
2
), pp.
101
142
.
6.
Xing
,
Y.
,
Spring
,
S.
, and
Weigand
,
B.
,
2011
, “
Experimental and Numerical Investigation of Impingement Heat Transfer on a Flat and Micro-Rib Roughened Plate With Different Crossflow Schemes
,”
Int. J. Therm. Sci.
,
50
(
7
), pp.
1293
1307
.
7.
Liang
,
G.
,
2009
, “
Turbine Airfoil With Multiple Near Wall Compartment Cooling
,”
U.S. Patent No. 7,556,476 B1
.
8.
Gillespie
,
D. R. H.
,
Wang
,
Z.
,
Ireland
,
P. T.
, and
Kohler
,
S. T.
,
1998
, “
Full Surface Local Heat Transfer Coefficient Measurements in a Model of an Integrally Cast Impingement Cooling Geometry
,”
ASME J. Turbomach.
,
120
(
1
), pp.
92
99
.
9.
Terzis
,
A.
,
Wagner
,
G.
,
von Wolfersdorf
,
J.
,
Ott
,
P.
, and
Weigand
,
B.
,
2014
, “
Effect of Hole Staggering on the Cooling Performance of Narrow Impingement Channels Using the Transient Liquid Crystal Technique
,”
ASME J. Heat Transfer
,
136
(
7
), p.
071701
.
10.
Terzis
,
A.
,
Ott
,
P.
,
von Wolfersdorf
,
J.
,
Weigand
,
B.
, and
Cochet
,
M.
,
2014
, “
Detailed Heat Transfer Distributions of Narrow Impingement Channels for Cast-In Turbine Airfoils
,”
ASME J. Turbomach.
,
136
(
9
), p.
091011
.
11.
Terzis
,
A.
,
Ott
,
P.
,
Cochet
,
M.
,
von Wolfersdorf
,
J.
, and
Weigand
,
B.
,
2015
, “
Effect of Varying Jet Diameter on the Heat Transfer Distributions of Narrow Impingement Channels
,”
ASME J. Turbomach.
,
137
(
2
), p.
021004
.
12.
Kercher
,
D. M.
, and
Tabakoff
,
W.
,
1970
, “
Heat Transfer by a Square Array of Round Air Jets Impinging Perpendicular to a Flat Surface Including the Effect of Spent Air
,”
ASME J. Eng. Power
,
92
(
1
), pp.
73
82
.
13.
Chance
,
J. L.
,
1974
, “
Experimental Investigation of Air Impingement Heat Transfer Under an Array of Round Jets
,”
Tappi J.
,
57
(
6
), pp.
108
112
.
14.
Metzger
,
D. E.
,
Florschuetz
,
L. W.
,
Takeuchi
,
D. I.
,
Behee
,
R. D.
, and
Berry
,
R. A.
,
1979
, “
Heat Transfer Characteristics for Inline and Staggered Arrays of Circular Jets With Crossflow of Spent Air
,”
ASME J. Heat Transfer
,
101
(
3
), pp.
526
531
.
15.
Florschuetz
,
L. W.
,
Truman
,
C. R.
, and
Metzger
,
D. E.
,
1981
, “
Streamwise Flow and Heat Transfer Distributions for Jet Array Impingement With Crossflow
,”
ASME J. Heat Transfer
,
103
(
2
), pp.
337
342
.
16.
Bailey
,
J. C.
, and
Bunker
,
R. S.
,
2002
, “
Local Heat Transfer and Flow Distributions for Impinging Jet Arrays of Dense and Sparse Extent
,”
ASME
Paper No. GT2002-30473.
17.
Goodro
,
M.
,
Ligrani
,
P. M.
,
Fox
,
M.
, and
Moon
,
H. K.
,
2010
, “
Mach Number, Reynolds Number, Jet Spacing Variations: Full Array of Impinging Jets
,”
J. Thermophys. Heat Transfer
,
24
(
1
), pp.
133
144
.
18.
Goodro
,
M.
,
Park
,
J.
,
Ligrani
,
P.
,
Fox
,
M.
, and
Moon
,
H. K.
,
2008
, “
Effects of Hole Spacing on Spatially-Resolved Jet Array Impingement Heat Transfer
,”
Int. J. Heat Mass Transfer
,
51
(25–26), pp.
6243
6253
.
19.
Goodro
,
M.
,
Park
,
J.
,
Ligrani
,
P. M.
,
Fox
,
M.
, and
Moon
,
H. K.
,
2009
, “
Effect of Temperature Ratio on Jet Array Impingement Heat Transfer
,”
ASME J. Heat Transfer
,
131
(
1
), p.
012201
.
20.
Goodro
,
M.
,
Park
,
J.
,
Ligrani
,
P. M.
,
Fox
,
M.
, and
Moon
,
H. K.
,
2010
, “
Mach Number, Reynolds Number, Jet Spacing Variations: Full Array of Impinging Jets
,”
AIAA J. Thermophys. Heat Transfer
,
24
(
1
), pp.
133
144
.
21.
Lee
,
J.
,
Ren
,
Z.
,
Ligrani
,
P. M.
,
Lee
,
D. H.
,
Fox
,
M. D.
, and
Moon
,
H.-K.
,
2014
, “
Cross-Flow Effects on Impingement Array Heat Transfer With Varying Jet-to-Target Plate Distance and Hole Spacing
,”
Int. J. Heat Mass Transfer
,
75
, pp.
534
544
.
22.
Lee
,
J.
,
Ren
,
Z.
,
Ligrani
,
P. M.
,
Fox
,
M. D.
, and
Moon
,
H.-K.
,
2015
, “
Crossflows From Jet Array Impingement Cooling: Hole Spacing, Target Plate Distance, Reynolds Number Effects
,”
Int. J. Therm. Sci.
,
88
, pp.
7
18
.
23.
Yan
,
X.
, and
Saniei
,
N.
,
1997
, “
Heat Transfer From an Obliquely Impinging Circular, Air Jet to a Flat Plate
,”
Int. J. Heat Fluid Flow
,
18
(
6
), pp.
591
599
.
24.
Tong
,
A. Y.
,
2003
, “
On the Impingement Heat Transfer of an Oblique Free Surface Plane Jet
,”
Int. J. Heat Mass Transfer
,
46
(
11
), pp.
2077
2085
.
25.
Schulz
,
S.
,
Schueren
,
S.
, and
Von Wolfersdorf
,
J.
,
2014
, “
A Particle Image Velocimetry-Based Investigation of the Flow Field in an Oblique Jet Impingement Configuration
,”
ASME J. Turbomach.
,
136
(
5
), p.
051009
.
26.
Schueren
,
S.
,
Hoefler
,
F.
,
von Wolfersdorf
,
J.
, and
Naik
,
S.
,
2013
, “
Heat Transfer in an Oblique Jet Impingement Configuration With Varying Jet Geometries
,”
ASME J. Turbomach.
,
135
(
2
), p.
021010
.
27.
El-Gabry
,
L. A.
, and
Kaminski
,
D. A.
,
2005
, “
Experimental Investigation of Local Heat Transfer Distribution on Smooth and Roughened Surfaces Under an Array of Angled Jets
,”
ASME J. Turbomach.
,
127
(
3
), pp.
532
544
.
28.
Xing
,
Y.
,
Spring
,
S.
, and
Weigand
,
B.
,
2010
, “
Experimental and Numerical Investigation of Heat Transfer Characteristics of Inline and Staggered Arrays of Impinging Jets
,”
ASME J. Heat Transfer
,
132
(
9
), p.
092201
.
29.
Hay
,
J. L.
, and
Hollingsworth
,
D. K.
,
1996
, “
A Comparison of Trichromic Systems for Use in the Calibration of Polymer-Dispersed Thermochromic Liquid Crystals
,”
Exp. Therm. Fluid Sci.
,
12
(
1
), pp.
1
12
.
30.
Chen
,
W.
,
Ren
,
J.
, and
Jiang
,
H.
,
2011
, “
Effect of Turning Vane Configurations on Heat Transfer and Pressure Drop in a Ribbed Internal Cooling System
,”
ASME J. Turbomach.
,
133
(
4
), p.
41012
.
31.
Incropera
,
F. P.
,
Dewitt
,
D. P.
,
Bergman
,
T. L.
, and
Lavine
,
A. S.
,
2006
,
Fundamentals of Heat and Mass Transfer
,
Wiley
,
Hoboken, NJ
.
32.
Terzis
,
A.
,
von Wolfersdorf
,
J.
,
Weigand
,
B.
, and
Ott
,
P.
,
2012
, “
Thermocouple Thermal Inertia Effects on Impingement Heat Transfer Experiments Using the Transient Liquid Crystal Technique
,”
Meas. Sci. Technol.
,
23
(
11
), p.
115303
.
33.
Moffat
,
R. J.
,
1998
, “
Describing the Uncertainties in Experimental Results
,”
Exp. Therm. Fluid Sci.
,
1
(
1
), pp.
3
17
.
34.
Yan
,
Y.
, and
Owen
,
J. M.
,
2002
, “
Uncertainties in Transient Heat Transfer Measurements With Liquid Crystal
,”
Int. J. Heat Fluid Flow
,
23
(
1
), pp.
29
35
.
35.
Chi
,
Z.
,
Kan
,
R.
,
Ren
,
J.
, and
Jiang
,
H.
,
2013
, “
Experimental and Numerical Study of the Anti-Crossflows Impingement Cooling Structure
,”
Int. J. Heat Mass Transfer
,
64
, pp.
567
580
.
36.
Katti
,
V.
, and
Prabhu
,
S. V.
,
2009
, “
Influence of Streamwise Pitch on the Local Heat Transfer Characteristics for In-Line Arrays of Circular Jets With Crossflow of Spent Air in One Direction
,”
Heat Mass Transfer
,
45
(
9
), pp.
1167
1184
.
37.
Arik
,
M.
, and
Bunker
,
R. S.
,
2006
, “
Electronics Packaging Cooling: Technologies From Gas Turbine Engine Cooling
,”
ASME J. Electron. Packag.
,
128
(
3
), pp.
215
225
.
38.
Son
,
C. M.
,
Gillespie
,
D. R. H.
,
Ireland
,
P. T.
, and
Dailey
,
G. M.
,
2001
, “
Heat Transfer and Flow Characteristics of an Engine Representative Impingement Cooling System
,”
ASME J. Turbomach.
,
123
(
1
), pp.
154
160
.
39.
Goldstein
,
R.
, and
Seol
,
W. S.
,
1991
, “
Heat Transfer to a Row of Impinging Circular Air Jets Including the Effect of Entrainment
,”
Int. J. Heat Mass Transfer
,
34
(
8
), pp.
2133
2147
.
You do not currently have access to this content.