A time-resolved particle image velocimetry (TR-PIV) system has been employed to investigate a laminar separation bubble which is induced by a strong adverse pressure gradient typical of ultrahigh-lift low-pressure turbine (LPT) blades. Proper orthogonal decomposition (POD) and dynamic mode decomposition (DMD) are described and applied within this paper. These techniques allow reducing the degrees-of-freedom of complex systems producing a low-order model ranked by the energy content (POD) or by the modal contribution to the dynamics of the system itself (DMD), useful to highlight the dominant dynamics. The time–space evolution of the laminar separation bubble is characterized by rollup vortices shed in the surrounding of the bubble maximum displacement as a consequence of the Kelvin–Helmholtz (KH) instability process as well as by a low-frequency motion of the separated shear layer. The decomposition techniques proposed allow the identification of these coherent structures and the characterization of their modal properties (e.g., temporal frequency, spatial wavelength, and growth rate). The POD separates the different dynamics that induce velocity fluctuations at different frequencies and wavelength looking at their contribution to the overall kinetic energy. The DMD provides complementary information: the unstable spatial frequencies are identified with their growth (or decay) rates. DMD modes associated with the Kelvin–Helmholtz instability and the corresponding vortex shedding phenomenon clearly dominate the unsteady behavior of the laminar separation bubble, being characterized by the highest growth rate. Modes with longer wavelength describe the low-frequency motion of the laminar separation bubble and are neutrally stable. Results reported in this paper prove the ability of the present methods in extracting the dominant dynamics from a large dataset, providing robust and rapid tools for the in depth analysis of transition and separation processes.

References

References
1.
Mayle
,
R. E.
,
1991
, “
The Role of Laminar-Turbulent Transition in Gas Turbine Engines
,”
ASME J. Turbomach.
,
113
(
4
), pp.
509
537
.
2.
Bons
,
J. L.
,
Pluim
,
J.
,
Gompertz
,
K.
,
Bloxham
,
M.
, and
Clark
,
J.
,
2008
, “
The Application of Flow Control to an Aft-Loaded Low Pressure Turbine Cascade With Unsteady Wakes
,”
ASME
Paper No. GT2008-50864.
3.
Mahallati
,
A.
,
McAuliffe
,
B. R.
,
Sjolander
,
S. A.
, and
Praisner
,
T. J.
,
2013
, “
Aerodynamics of a Low-Pressure Turbine Airfoil at Low Reynolds Numbers—Part I: Steady Flow Measurements
,”
ASME J. Turbomach.
,
135
(
1
), p.
011010
.
4.
Satta
,
F.
,
Simoni
,
D.
,
Ubaldi
,
M.
,
Zunino
,
P.
, and
Bertini
,
F.
,
2014
, “
Loading Distribution Effects on Separated Flow Transition of Ultra-High-Lift Turbine Blades
,”
AIAA J. Propul. Power
,
30
(
3
), pp.
845
856
.
5.
Jacob
,
R. G.
, and
Durbin
,
P. A.
,
2001
, “
Simulations of Bypass Transition
,”
J. Fluid Mech.
,
428
, pp.
185
212
.
6.
Nolan
,
K.
, and
Zaki
,
T.
,
2013
, “
Conditional Sampling of Transitional Boundary Layers in Pressure Gradients
,”
J. Fluid Mech.
,
728
, pp.
306
339
.
7.
Hain
,
R.
,
Kähler
,
C. J.
, and
Radespiel
,
R.
,
2009
, “
Dynamics of Laminar Separation Bubbles at Low-Reynolds-Number Aerofoils
,”
J. Fluid Mech.
,
630
, pp.
129
153
.
8.
Simoni
,
D.
,
Ubaldi
,
M.
,
Zunino
,
P.
,
Lengani
,
D.
, and
Bertini
,
F.
,
2012
, “
An Experimental Investigation of the Separated-Flow Transition Under High-Lift Turbine Blade Pressure Gradients
,”
Flow Turbul. Combust.
,
88
(
1
), pp.
45
62
.
9.
Wu
,
X.
,
Jacobs
,
R.
,
Hunt
,
J. C. R.
, and
Durbin
,
P. A.
,
2001
, “
Evidence of Longitudinal Vortices Evolved From Distorted Wakes in a Turbine Passage
,”
J. Fluid Mech.
,
446
, pp.
199
228
.
10.
Nagabhushana Rao
,
V.
,
Tucker
,
P.
,
Jefferson-Loveday
,
R.
, and
Coull
,
J.
,
2013
, “
Large Eddy Simulations in Low-Pressure Turbines: Effect of Wakes at Elevated Free-Stream Turbulence
,”
Int. J. Heat Fluid Flow
,
43
, pp.
85
95
.
11.
Lumley
,
J. L.
,
1967
, “
The Structure of Inhomogeneous Turbulent Flows
,”
Atmospheric Turbulence and Wave Propagation
,
A. M.
Yaglom
and
V. I.
Tatarski
, eds., Nauka, Moscow, pp.
166
178
.
12.
Sirovich
,
L.
,
1987
, “
Turbulence and the Dynamics of Coherent Structures. Part I
,”
Q. Appl. Math.
,
45
(
3
), pp.
561
590
.
13.
Legrand
,
M.
,
Nogueira
,
J.
, and
Lecuona
,
A.
,
2011
, “
Flow Temporal Reconstruction From Non-Time-Resolved Data—Part I: Mathematic Fundamentals
,”
Exp. Fluids
,
51
(
4
), pp.
1047
1055
.
14.
Sarkar
,
S.
,
2008
, “
Identification of Flow Structures on a LP Turbine Blade Due to Periodic Passing Wakes
,”
ASME J. Fluid Eng.
,
130
(
6
), p.
061103
.
15.
Ben Chiekh
,
M.
,
Michard
,
M.
,
Guellouz
,
M. S.
, and
Béra
,
J. C.
,
2013
, “
POD Analysis of Momentumless Trailing Edge Wake Using Synthetic Jet Actuation
,”
Exp. Therm. Fluid Sci.
,
46
, pp.
89
102
.
16.
Shi
,
L. L.
,
Liu
,
Y. Z.
, and
Wan
,
J. J.
,
2010
, “
Influence of Wall Proximity on Characteristics of Wake Behind a Square Cylinder: PIV Measurements and POD Analysis
,”
Exp. Therm. Fluid Sci.
,
34
(
1
), pp.
28
36
.
17.
Berrino
,
M.
,
Lengani
,
D.
,
Simoni
,
D.
,
Ubaldi
,
M.
,
Zunino
,
P.
, and
Bertini
,
F.
,
2015
, “
Dynamics and Turbulence Characteristics of Wake-Boundary Layer Interaction in a Low Pressure Turbine Blade
,”
ASME
Paper No. GT2015-42626.
18.
Lengani
,
D.
, and
Simoni
,
D.
,
2015
, “
Recognition of Coherent Structures in the Boundary Layer of a Low-Pressure-Turbine Blade for Different Free-Stream Turbulence Intensity Levels
,”
Int. J. Heat Fluid Flow
,
54
, pp.
1
13
.
19.
Lengani
,
D.
,
Simoni
,
D.
,
Ubaldi
,
M.
,
Zunino
,
P.
, and
Bertini
,
F.
,
2016
, “
Coherent Structures Formation During Wake-Boundary Layer Interaction on a LP Turbine Blade
,”
Flow Turbul. Combust.
, epub, pp.
1
25
.
20.
Schmid
,
P. J.
,
2010
, “
Dynamic Mode Decomposition of Numerical and Experimental Data
,”
J. Fluid Mech.
,
656
, pp.
5
28
.
21.
Sarmast
,
S.
,
Dadfar
,
R.
,
Mikkelsen
,
R. F.
,
Schlatter
,
P.
,
Ivanell
,
S.
,
Sørensen
,
J. N.
, and
Henningson
,
D. S.
,
2014
, “
Mutual Inductance Instability of the Tip Vortices Behind a Wind Turbine
,”
J. Fluid Mech.
,
755
, pp.
705
731
.
22.
Chen
,
K. K.
,
Tu
,
J. H.
, and
Rowley
,
C. W.
,
2012
, “
Variants of Dynamic Mode Decomposition: Boundary Condition, Koopman, and Fourier Analyses
,”
J. Nonlinear Sci.
,
22
(
6
), pp.
887
915
.
23.
Bernardini
,
C.
,
Benton
,
S. I.
,
Chen
,
J.-P.
, and
Bons
,
J. P.
,
2014
, “
Exploitation of Subharmonics for Separated Shear Layer Control on a High-Lift Low-Pressure Turbine Using Acoustic Forcing
,”
ASME J. Turbomach.
,
136
(
5
), p.
051018
.
24.
Lou
,
W.
, and
Hourmouziadis
,
J.
,
2000
, “
Separation Bubbles Under Steady and Periodic-Unsteady Main Flow Conditions
,”
ASME J. Turbomach.
,
122
(
4
), pp.
634
643
.
25.
Berrino
,
M.
,
Lengani
,
D.
,
Simoni
,
D.
,
Ubaldi
,
M.
, and
Zunino
,
P.
,
2015
, “
POD Analysis of the Wake-Boundary Layer Unsteady Interaction in a LPT Blade Cascade
,”
11th European Turbomachinery Conference
(
ETC11
), Madrid, Spain, Mar. 23–27.
26.
Rowley
,
C. W.
,
Mezić
,
I.
,
Bagheri
,
S.
,
Schlatter
,
P.
, and
Henningson
,
D. S.
,
2009
, “
Spectral Analysis of Nonlinear Flows
,”
J. Fluid Mech.
,
641
, pp.
115
127
.
27.
Alam
,
M.
, and
Sandham
,
N.
,
2000
, “
Direct Numerical Simulation of “Short” Laminar Separation Bubbles With Turbulent Reattachment
,”
J. Fluid Mech.
,
410
, pp.
1
28
.
28.
Wissink
,
W. G.
, and
Rodi
,
W.
,
2003
, “
DNS of a Laminar Separation Bubble in the Presence of Oscillating External Flow
,”
Flow Turbul. Combust.
,
71
(
1
), pp.
311
331
.
29.
Burgmann
,
S.
, and
Schröder
,
W.
,
2008
, “
Investigation of the Vortex Induced Unsteadiness of a Separation Bubble Via Time-Resolved and Scanning PIV Measurements
,”
Exp. Fluids
,
45
(
4
), pp.
675
691
.
30.
Simoni
,
D.
,
Ubaldi
,
M.
, and
Zunino
,
P.
,
2012
, “
Loss Production Mechanisms in a Laminar Separation Bubble
,”
Flow Turbul. Combust.
,
89
(
4
), pp.
547
562
.
31.
Langari
,
M.
, and
Yang
,
Z.
,
2013
, “
Numerical Study of the Primary Instability in a Separated Boundary Layer Transition Under Elevated Free-Stream Turbulence
,”
Phys. Fluids
,
25
(
7
), p.
074106
.
32.
Lengani
,
D.
,
Simoni
,
D.
,
Ubaldi
,
M.
, and
Zunino
,
P.
,
2014
, “
POD Analysis of the Unsteady Behavior of a Laminar Separation Bubble
,”
Exp. Therm. Fluid Sci.
,
58
, pp.
70
79
.
You do not currently have access to this content.