Increasing turbine inlet temperature is one of the main strategies used to accomplish the demand for increased performance of modern gas turbines. Thus, optimization of the cooling system is becoming of paramount importance in gas turbine development. Leading edge (LE) represents a critical part of cooled nozzles and blades, given the presence of the hot gases stagnation point, and the unfavorable geometrical characteristics for cooling purposes. This paper reports the results of a numerical investigation, carried out to support a parallel experimental campaign, aimed at assessing the rotation effects on the internal heat transfer coefficient (HTC) distribution in a realistic LE cooling system of a high pressure blade. Experiments were performed in static and rotating conditions replicating a typical range of jet Reynolds number (10,000–40,000) and Rotation number (0–0.05). The experimental results consist of flowfield measurements on several internal planes and HTC distributions on the LE internal surface. Hybrid RANS–large eddy simulation (LES) models were exploited for the simulations, such as scale adaptive simulation and detached eddy simulation, given their ability to resolve the complex flowfield associated with jet impingement. Numerical flowfield results are reported in terms of both jet velocity profiles and 2D vector plots on two internal planes, while the HTC distributions are presented as detailed 2D maps together with averaged Nusselt number profiles. A fairly good agreement with experiments is observed, which represents a validation of the adopted modeling strategy, allowing an in-depth interpretation of the experimental results.

References

References
1.
Metzger
,
D. E.
, and
Bunker
,
R. S.
,
1990a
, “
Local Heat Transfer in Internally Cooled Turbine Airfoil Leading Edge Regions—Part II: Impingement Cooling With Film Coolant Extraction
,”
ASME J. Turbomach.
,
112
(
3
), pp.
459
466
.
2.
Metzger
,
D. E.
,
Yamashita
,
T. T.
, and
Jenkins
,
C. W.
,
1969
, “
Impingement Cooling of Concave Surfaces With Lines of Circular Air Jets
,”
ASME J. Eng. Gas Turbines Power
,
91
(
3
), pp.
149
155
.
3.
Metzger
,
D. E.
,
Takeuchi
,
D. I.
, and
Kuenstler
,
P. A.
, “
Effectiveness and Heat Transfer With Full-Coverage Film Cooling
,”
ASME J. Eng. Gas Turbines Power
,
95
(
3
), pp.
180
184, 1973
.
4.
Kercher
,
D.
, and
Tabakoff
,
W.
,
1970
, “
Heat Transfer by a Square Array of Round Air Jets Impinging Perpendicular to Flat Surface Including the Effect of Spent Air
,”
ASME J. Eng. Gas Turbines Power
,
92
(
1
), pp.
73
82
.
5.
Martin
,
H.
,
1977
, “
Heat and Mass Transfer Between Impinging Gas Jets and Solid Surfaces
,”
Advances in Heat Transfer
, Vol. 13, J. P. Hartnett and T. F. Irvine, eds., Elsevier, Amsterdam, The Netherlands, pp. 1–60.
6.
Behbahani
,
A.
, and
Goldstein
,
R.
,
1983
, “
Local Heat Transfer to Staggered Arrays of Impinging Circular Air Jets
,”
ASME J. Eng. Gas Turbines Power
,
105
(
2
), pp.
354
360
.
7.
Florschuetz
,
L.
,
Truman
,
C.
, and
Metzger
,
D.
,
1981
, “
Streamwise Flow and Heat Transfer Distributions for Jet Array Impingement With Crossflow
,”
ASME J. Heat Transfer
,
103
(
2
), pp.
337
342
.
8.
Florschuetz
,
L.
,
Metzger
,
D.
,
Su
,
C.
,
Isoda
,
Y.
, and
Tseng
,
H.
,
1984
, “
Heat Transfer Characteristics for Jet Arrays Impingement With Initial Crossflow
,”
ASME J. Heat Transfer
,
106
(
1
), pp.
34
41
.
9.
Chupp
,
R.
,
Helms
,
H.
,
McFadden
,
P.
, and
Brown
,
T.
,
1969
, “
Evaluation of Internal Heat Transfer Coefficients for Impingement Cooled Turbine Blades
,”
J. Aircr.
,
6
(3), pp.
203
208
.
10.
Metzger
,
D.
,
Baltzer
,
R.
, and
Jenkins
,
C.
,
1972
, “
Impingement Cooling Performance in Gas Turbine Airfoils Including Effects of Leading Edge Sharpness
,”
ASME J. Eng. Gas Turbines Power
,
94
(
3
), pp.
219
225
.
11.
Hrycak
,
P.
,
1981
, “
Heat Transfer From a Row of Impinging Jets to Concave Cylindrical Surfaces
,”
Int. J. Heat Mass Transfer
,
24
(
3
), pp.
407
419
.
12.
Metzger
,
D.
, and
Bunker
,
R.
,
1990b
, “
Local Heat Transfer in Internally Cooled Turbine Airfoil Leading Edge Regions—Part I: Impingement Cooling Without Film Coolant Extraction
,”
ASME J. Turbomach.
,
112
(3), pp.
451
458
.
13.
Polat
,
S.
,
Mujmdar
,
A. S.
, and
Douglas
,
W. J. M.
,
1985
, “
Heat Transfer Distribution Under a Turbulent Impinging Jet—A Numerical Study
,”
Drying Technol.
,
3
(
1
), pp.
15
38
.
14.
Frost
,
S. A.
, and
Jambunathan
,
K.
,
1996
, “
Numerical Prediction of Semiconfined Jet Impingement and Comparison With Experimental Data
,”
Int. J. Numer. Methods Fluids
,
23
(
3
), pp.
295
306
.
15.
Coussirat
,
M.
,
Van Beeck
,
J.
,
Mestres
,
M.
,
Egusquiza
,
E.
,
Buchlin
,
J. M.
, and
Valero
,
C.
,
2005
, “
Computational Fluid Dynamics Modeling of Impinging Gas-Jet Systems—II: Application to an Industrial Cooling System Device
,”
ASME J. Fluids Eng.
,
127
(
4
), pp.
704
713
.
16.
Morris
,
G. K.
,
Garimella
,
S. V.
, and
Fitzgerald
,
J. A.
, “
Flow-Field Prediction in Submerged and Confined Jet Impingement Using the Reynolds Stress Model
,”
ASME J. Electron. Packag.
,
121
(
4
), pp.
255
262
.
17.
Souris
,
N.
,
Liakos
,
H.
, and
Founti
,
M.
, “
Impinging Jet Cooling on Concave Surfaces
,”
AIChE J.
,
50
(
8
), pp.
1672
1683
.
18.
Prasad
,
B. V. S. S. S.
, and
Rama Kumar
,
B. V. N.
,
2008
, “
Computational Flow and Heat Transfer of a Row of Circular Jets Impinging on a Concave Surface
,”
Heat Mass Transfer
,
44
(6), pp.
667
678
.
19.
Taslim
,
M. E.
,
Pan
,
Y.
, and
Spring
,
S. D.
,
2001
, “
An Experimental Study of Impingement on Roughened Airfoil Leading-Edge Walls With Film Holes
,”
ASME J. Turbomach.
,
123
(
4
), pp.
766
773
.
20.
Taslim
,
M.
,
Bakhtari
,
K.
, and
Liu
,
H.
,
2003
, “
Experimental and Numerical Investigation of Impingement on a Rib-Roughened Leading-Edge Wall
,”
ASME
Paper No. GT2003-38118.
21.
Taslim
,
M.
, and
Bethka
,
D.
,
2007
, “
Experimental and Numerical Impingement Heat Transfer in an Airfoil Leading-Edge Cooling Channel With Crossflow
,”
ASME
Paper No. GT2007-28212.
22.
Elebiary
,
K.
, and
Taslim
,
M.
,
2011
, “
Experimental/Numerical Crossover Jet Impingement in an Airfoil Leading-Edge Cooling Channel
,”
ASME
Paper No. GT2011-46004.
23.
Andrei
,
L.
,
Carcasci
,
C.
,
Da Soghe
,
R.
,
Facchini
,
B.
,
Maiuolo
,
F.
,
Tarchi
,
L.
, and
Zecchi
,
S.
, “
Heat Transfer Measurements in a Leading Edge Geometry With Racetrack Holes and Film Cooling Extraction
,”
ASME J. Turbomach.
,
135
(
3
), p.
031020
.
24.
Facchini
,
B.
,
Maiuolo
,
F.
,
Tarchi
,
L.
, and
Ohlendorf
,
N.
,
2013
, “
Experimental Investigation on the Heat Transfer in a Turbine Airfoil Leading Edge Region: Effects of the Wedge Angle and Jet Impingement Geometries
,”
European Turbomachinery Conference (ETC2013)
, Lappeenranta Finland, Apr. 15–19, Paper No. 130.
25.
Iacovides
,
H.
,
Kounadis
,
D.
,
Launder
,
B. E.
,
Li
,
J.
, and
Xu
,
Z.
,
2005
, “
Experimental Study of the Flow and Thermal Development of a Row of Cooling Jets Impinging on a Rotating Concave Surface
,”
ASME J. Turbomach.
,
127
(
1
), pp.
222
229
.
26.
Craft
,
T. J.
,
Iacovides
,
H.
, and
Mostafa
,
N. A.
,
2008a
, “
Modelling of Three-Dimensional Jet Array Impingement and Heat Transfer on a Concave Surface
,”
Int. J. Heat Fluid Flow
,
29
(
3
), pp.
687
702
.
27.
Craft
,
T. J.
,
Iacovides
,
H.
, and
Mostafa
,
N. A.
,
2008b
, “
Numerical Modelling of Flow and Heat Transfer From an Array of Jets Impinging Onto a Concave Surface Under Stationary and Rotating Conditions
,”
ASME
Paper No. GT2008-50624.
28.
Cho
,
H. H.
,
Hong
,
S. K.
, and
Lee
,
D. H.
,
2008
, “
Heat/Mass Transfer Measurement on Concave Surface in Rotating Jet Impingement
,”
J. Mech. Sci. Technol.
,
22
(
10
), pp.
1952
1958
.
29.
Cho
,
H. H.
,
Hong
,
S. K.
, and
Lee
,
D. H.
,
2009
, “
Effect of Jet Direction on Heat/Mass Transfer of Rotating Impingement Jet
,”
Appl. Therm. Eng.
,
29
(
14–15
), pp.
2914
2920
.
30.
Cho
,
H. H.
,
Hong
,
S. K.
, and
Lee
,
D. H.
,
2009
, “
Heat/Mass Transfer in Rotating Impingement/Effusion Cooling With Rib Turbulators
,”
Int. J. Heat Mass Transfer
,
52
(
13–14
), pp.
2914
2920
.
31.
Denga
,
H.
,
Gua
,
Z.
,
Zhub
,
J.
, and
Tao
,
Z.
,
2012
, “
Experiments on Impingement Heat Transfer With Film Extraction Flow on the Leading Edge of Rotating Blades
,”
Int. J. Heat Mass Transfer
,
55
(21–22), pp.
5425
5435
.
32.
Jung
,
E. Y.
,
Park
,
C. U.
,
Lee
,
D. H.
,
Park
,
J. S.
,
Park
,
S.
, and
Cho
,
H. H.
,
2013
, “
Effect of Rotation on Heat Transfer of a Concave Surface With Array Impingement Jet
,”
ASME
Paper No. GT2013-95443.
33.
Facchini
,
B.
,
Burberi
,
E.
,
Carcasci
,
C.
,
Cocchi
,
L.
,
Massini
,
D.
,
Armellini
,
A.
,
Casarsa
,
L.
, and
Furlani
,
L.
,
2016
, “
Effect of Rotation on a Gas Turbine Blade Internal Cooling System: Experimental Investigation
,”
ASME
Paper No. GT2016-57594.
34.
Bianchini
,
C.
,
Burberi
,
E.
,
Cocchi
,
L.
,
Facchini
,
B.
,
Massini
,
D.
, and
Pievaroli
,
M.
,
2015
, “
Numerical Analysis and Preliminary Experimental Heat Transfer Measurements on a Novel Rotating Leading Edge Model
,”
12th International Symposium on Experimental Computational Aerothermodynamics of Internal Flows
, Genova, Italy, July 13–16.
35.
Furlani
,
L.
,
Armellini
,
A.
, and
Casarsa
,
L.
, “
Aerodynamic Behaviour Under Rotation of an Advanced Leading Edge Impingement Cooling Channel
,”
12th International Symposium on Experimental Computational Aerothermodynamics of Internal Flows
, Genova, Italy, July 13–16.
36.
ASME
,
1985
, “
Measurement Uncertainty : Part 1: Instruments and Apparatus
,” ANSI/ASME Performance Test Code, American Society of Mechanical Engineers, New York, Standard No. PTC 19.1-1985.
37.
Kline
,
S. J.
, and
McClintock
,
F. A.
,
1953
, “
Describing Uncertainties in Single Sample Experiments
,”
ASME Mech. Eng.
,
75
, pp.
3
8
.
38.
Menter
,
F. R.
,
2012
, “
Best Practice: Scale-Resolving Simulations in ANSYS CFD
,” ANSYS Germany GmbH, Darmstadt, Germany.
39.
Byerley
,
A. R.
,
1989
, “
Heat Transfer Near the Entrance to a Film Cooling Hole in a Gas Turbine Blade
,” Ph.D thesis, University of Oxford, Oxford, UK.
40.
Pope
,
S. B.
,
2004
, “
Ten Questions Concerning the Large-Eddy Simulation of Turbulent Flows
,”
New J. Phys.
,
6
, p. 35.
41.
Boudier
,
G.
,
Gicquel
,
L. Y. M.
, and
Poinsot
,
T. J.
,
2008
, “
Effects of Mesh Resolution on Large Eddy Simulation of Reacting Flows in Complex Geometry Combustors
,”
Elsevier Combust. Flame
,
155
(1–2), pp.
196
214
.
42.
Spalart
,
P. R.
,
Jou
,
W.-H.
,
Strelets
,
M.
, and
Allmaras
,
S. R.
,
1997
, “
Comments on the Feasibility of LES for Wings, and on a Hybrid RANS/LES Approach
,”
1st AFOSR International Conference on DNS/LES
.
43.
Strelets
,
M.
,
2001
, “
Detached Eddy Simulation of Massively Separated Flows
,”
39th Aerospace Sciences Meeting and Exhibit
,
AIAA
Paper No. 2001-0879.
44.
Menter
,
F. R.
, and
Kuntz
,
M.
,
2003
, “
Development and Application of a Zonal DES Turbulence Model for CFX-5
,” ANSYS CFX, Technical Report No. 5CFX-VAL17/0703.
45.
Egorov
,
Y.
, and
Menter
,
F. R.
,
2007
, “
Development and Application of SST-SAS Turbulence Model in the DESIDER Project
,”
Advances in Hybrid RANS-LES Modelling
(Notes on Numerical Fluid Mechanics and Multidisciplinary Design, Vol. 93), Springer, Berlin, pp. 261–270.
You do not currently have access to this content.