The effect of coolant addition or “mixing loss” on aerodynamic performance is formulated for the turbine, where mixing takes place between gas streams of different compositions as well as static temperatures. To do this, a second-law efficiency measure is applied to a generalization of the one-dimensional mixing problem between a main gas stream and a single coolant feed, first introduced and studied by Hartsel (1972, “Prediction of Effects of Mass-Transfer Cooling on the Blade-Row Efficiency of Turbine Airfoils,” AIAA Paper No. 1972-11) for the turbine application. Hartsel's 1972 model for mass transfer cooling loss still remains the standard for estimating mixing loss in today's turbines. The present generalization includes losses due to the additional contributions of “compositional mixing” (mixing between unlike compositions of the main and coolant streams) as well as the effect of chemical reaction between the two streams. Scaling of the present dissipation function-based loss model to the mainstream Mach number and relative cooling massflow and static temperature is given. Limitations of the constant specific heats assumptions and the impact of fuel-to-air ratio are also quantified.

References

References
1.
Hartsel
,
J. E.
,
1972
, “
Prediction of Effects of Mass-Transfer Cooling on the Blade-Row Efficiency of Turbine Airfoils
,”
AIAA
Paper No. 1972-11.
2.
Shapiro
,
A.
,
1953
,
The Dynamics and Thermodynamics of Compressible Fluid Flow
,
Ronald Press
,
New York
.
3.
Hill
,
P.
, and
Peterson
,
C.
,
1992
,
Mechanics and Thermodynamics of Propulsion
,
Prentice-Hall
,
Upper Saddle River, NJ
.
4.
Denton
,
J. D.
,
1993
, “
Loss Mechanisms in Turbomachines
,”
ASME J. Turbomach.
,
115
(
4
), pp.
621
656
.
5.
Young
,
J. B.
, and
Horlock
,
J. H.
,
2006
, “
Defining the Efficiency of a Cooled Turbine
,”
ASME J. Turbomach.
,
128
(
4
), pp.
658
667
.
6.
Bejan
,
A.
,
1982
,
Entropy Generation Through Heat and Fluid Flow
,
Wiley
,
New York
.
7.
Young
,
J. B.
, and
Wilcock
,
R. C.
,
2002
, “
Modeling the Air-Cooled Gas Turbine: Part 1—General Thermodynamics
,”
ASME J. Turbomach.
,
124
(
2
), pp.
207
213
.
8.
Young
,
J. B.
, and
Wilcock
,
R. C.
,
2002
, “
Modeling the Air-Cooled Gas Turbine: Part 2—Coolant Flows and Losses
,”
ASME J. Turbomach.
,
124
(
2
), pp.
214
221
.
9.
Cha
,
C. M.
,
Kramlich
,
J. C.
, and
Kosály
,
G.
,
1998
, “
Finite-Rate Mixing Effects in Reburning
,”
Proc. Combust. Inst.
,
27
(
1
), pp.
1427
1434
.
10.
Cha
,
C. M.
, and
Kramlich
,
J. C.
,
2000
, “
Modeling Finite-Rate Mixing Effects in Reburning Using a Simple Mixing Model
,”
Combust. Flame
,
122
(1–2), pp.
151
164
.
11.
Lukachko
,
S. P.
,
Kirk
,
D. R.
, and
Waitz
,
I. A.
,
2002
, “
Turbine Durability Impacts of High Fuel-Air Ratio Combustors. Part 1: Potential for Intra-Turbine Oxidation of Partially Reacted Fuel
,”
ASME
Paper No. GT-2002-30077.
12.
Kirk
,
D. R.
,
Guenette
,
G. R.
,
Lukachko
,
S. P.
, and
Waitz
,
I. A.
,
2002
, “
Gas Turbine Engine Durability Impacts of High Fuel-Air Ratio Combustors. Part 2: Near Wall Reaction Effects on Film-Cooled Heat Transfer
,”
ASME
Paper No. GT-2002-30182.
13.
Hirschfelder
,
J. O.
,
Curtiss
,
C. F.
, and
Bird
,
R. B.
,
1954
,
Molecular Theory of Gases and Liquids
,
Wiley
,
New York
.
14.
de Groot
,
S. R.
, and
Mazur
,
P.
,
1984
,
Non-Equilibrium Thermodynamics
,
Dover
, Mineola, NY.
15.
Cha
,
C. M.
, and
Trouillet
,
P.
,
2003
, “
A Model for the Mixing Time Scale of a Turbulent Reacting Scalar
,”
Phys. Fluids
,
15
(
6
), pp.
1375
1380
.
16.
Cha
,
C. M.
, and
Trouillet
,
P.
,
2003
, “
A Subgrid-Scale Mixing Model for Large-Eddy Simulations of Turbulent Reacting Flows Using the Filtered Density Function
,”
Phys. Fluids
,
15
(
6
), pp.
1496
1504
.
17.
Gaggioli
,
R. A.
,
1961
, “
The Concept of Available Energy
,”
Chem. Eng. Sci.
,
16
(1–2), pp.
87
96
.
18.
Gaggioli
,
R. A.
,
1962
, “
The Concepts of Thermodynamic Friction, Thermal Available Energy, Chemical Available Energy and Thermal Energy
,”
Chem. Eng. Sci.
,
17
(
7
), pp.
523
530
.
19.
Cha
,
C. M.
,
Hong
,
S.
,
Ireland
,
P. T.
,
Denman
,
P.
, and
Savarianandam
,
V.
,
2012
, “
Experimental and Numerical Investigation of Combustor-Turbine Interaction Using an Isothermal, Nonreacting Tracer
,”
ASME J. Eng. Gas Turbines Power
,
134
(
8
), p.
081501
.
20.
Cha
,
C. M.
,
Ireland
,
P. T.
,
Denman
,
P. A.
, and
Savarianandam
,
V.
,
2012
, “
Turbulence Levels are High at the Combustor-Turbine Interface
,”
ASME
Paper No. GT2012-69130.
21.
Chase
,
M. W. J.
,
1998
, “
NIST-JANAF Thermochemical Tables
,”
J. Phys. Chem. Ref. Data, Monograph 9
.
22.
Hindmarsh
,
A. C.
,
1983
, “
ODEPACK, a Systematized Collection of ODE Solvers
,”
Scientific Computing: Applications of Mathematics and Computing to the Physical Sciences
(IMACS Transactions on Scientific Computation), Vol. 1, R. S. Stepleman, M. Carver, R. Peskin, W. F. Ames, and R. Vichnevetsky, eds., North-Holland, Amsterdam, The Netherlands, pp. 55–64.
23.
Colket
,
M.
,
Edwards
,
T.
,
Williams
,
S.
,
Cernanasky
,
N. P.
,
Miller
,
D. L.
,
Egolfopoulos
,
F.
,
Lindstedt
,
P.
,
Seshadri
,
K.
,
Dryer
,
F. L.
,
Law
,
C. K.
,
Friend
,
D.
,
Lenhert
,
D. B.
,
Pitsch
,
H.
,
Sarofim
,
A.
,
Smooke
,
M.
, and
Tsang
,
W.
,
2007
, “
Development of an Experimental Database and Kinetic Models for Surrogate Jet Fuels
,”
AIAA
Paper No. 2007-770.
You do not currently have access to this content.