Regions of three-dimensional separations are an inherent flow feature of the suction surface-endwall corner in axial compressors. These corner separations can cause a significant total pressure loss and reduce the compressor's efficiency. This paper uses wall-resolved LES to investigate the loss sources in a corner separation, and examines the influence of the inflow turbulence on these sources. Different subgrid scale (SGS) models are tested and the choice of model is found to be important. The σ SGS model, which performed well, is then used to perform LES of a compressor endwall flow. The time-averaged data are in good agreement with measurements. The viscous and turbulent dissipation are used to highlight the sources of loss, with the latter being dominant. The key loss sources are seen to be the 2D laminar separation bubble and trailing edge wake, and the 3D flow region near the endwall. Increasing the freestream turbulence (FST) intensity changes the suction surface boundary layer transition mode from separation induced to bypass. However, it does not significantly alter the transition location and therefore the corner separation size. Additionally, the FST does not noticeably interact with the corner separation itself, meaning that in this case the corner separation is relatively insensitive to the FST. The endwall boundary layer state is found to be significant. A laminar endwall boundary layer separates much earlier leading to a larger passage vortex. This significantly alters the endwall flow and loss. Hence, the need for accurate boundary measurements is clear.

References

References
1.
Dong
,
Y.
,
Gallimore
,
S. J.
, and
Hodson
,
H. P.
,
1987
, “
Three-Dimensional Flows and Loss Reduction in Axial Compressors
,”
ASME J. Turbomach.
,
109
(
3
), pp.
354
361
.
2.
Friedrichs
,
J.
,
Baumgarten
,
S.
,
Kosyna
,
G.
, and
Stark
,
U.
,
2001
, “
Effect of Stator Design on Stator Boundary Layer Flow in a Highly Loaded Single-Stage Axial-Flow Low-Speed Compressor
,”
ASME J. Turbomach.
,
123
(
3
), pp.
483
489
.
3.
Lei
,
V. M.
,
Spakovszky
,
Z. S.
, and
Greitzer
,
E. M.
,
2008
, “
A Criterion for Axial Compressor Hub-Corner Stall
,”
ASME J. Turbomach.
,
130
(
3
), p.
031006
.
4.
Goodhand
,
M. N.
, and
Miller
,
R. J.
,
2012
, “
The Impact of Real Geometries on Three-Dimensional Separations in Compressors
,”
ASME J. Turbomach.
,
134
(
2
), p.
021007
.
5.
Gbadebo
,
S. A.
,
Hynes
,
T. P.
, and
Cumpsty
,
N. A.
,
2004
, “
Influence of Surface Roughness on Three-Dimensional Separation in Axial Compressors
,”
ASME J. Turbomach.
,
126
(
4
), pp.
455
463
.
6.
Zaki
,
T. A.
,
Wissink
,
J. G.
,
Rodi
,
W.
, and
Durbin
,
P. A.
,
2010
, “
Direct Numerical Simulations of Transition in a Compressor Cascade: The Influence of Free-Stream Turbulence
,”
J. Fluid Mech.
,
665
, pp.
57
98
.
7.
Steinert
,
W.
, and
Starken
,
H.
,
1996
, “
Off-Design Transition and Separation Behavior of a CDA Cascade
,”
ASME J. Turbomach.
,
118
(
2
), pp.
204
210
.
8.
Gbadebo
,
S. A.
,
2003
, “
Three-Dimensional Separations in Compressors
,”
Ph.D thesis
, University of Cambridge, Cambridge, UK.
9.
Denton
,
J. D.
,
1993
, “
The 1993 IGTI Scholar Lecture: Loss Mechanisms in Turbomachines
,”
ASME J. Turbomach.
,
115
(
4
), p.
621
.
10.
Lardeau
,
S.
,
Leschziner
,
M.
, and
Zaki
,
T.
,
2011
, “
Large Eddy Simulation of Transitional Separated Flow Over a Flat Plate and a Compressor Blade
,”
Flow, Turbul. Combust.
,
88
(
1–2
), pp.
19
44
.
11.
Hilgenfeld
,
L.
, and
Pfitzner
,
M.
,
2004
, “
Unsteady Boundary Layer Development Due to Wake Passing Effects on a Highly Loaded Linear Compressor Cascade
,”
ASME J. Turbomach.
,
126
(
4
), pp.
493
500
.
12.
Gbadebo
,
S. A.
,
Cumpsty
,
N. A.
, and
Hynes
,
T. P.
,
2005
, “
Three-Dimensional Separations in Axial Compressors
,”
ASME J. Turbomach.
,
127
(
2
), pp.
331
339
.
13.
Piomelli
,
U.
, and
Chasnow
,
J. R.
,
1996
,
Large-Eddy Simulations: Theory and Applications, Turbulence and Transition Modelling
,
D.
Henningson
,
M.
Hallbäck
,
H.
Alfreddson
, and
A.
Johansson
, eds.,
Kluwer Academic Publishers
,
Dordrecht, The Netherlands
, pp.
269
336
.
14.
Spalart
,
P. R.
, and
Rumsey
,
C. L.
,
2007
, “
Effective Inflow Conditions for Turbulence Models in Aerodynamic Calculations
,”
AIAA J.
,
45
(
10
), pp.
1
14
.
15.
Crumpton
,
P. I.
,
Moinier
,
P.
, and
Giles
,
M. B.
,
1997
, “
An Unstructured Algorithm for High Reynolds Number Flows on Highly Stretched Grids
,” Tenth International Conference on Numerical Methods for Laminar and Turbulent Flow, pp.
561
572
.
16.
Rogers
,
S. E.
,
Kwak
,
D.
, and
Kiris
,
C.
,
1991
, “
Steady and Unsteady Solutions of the Incompressible Navier-Stokes Equations
,”
AIAA J.
,
29
(
4
), pp.
603
610
.
17.
Cui
,
J.
,
Nagabhushana Rao
,
V.
, and
Tucker
,
P.
,
2015
, “
Numerical Investigation of Contrasting Flow Physics in Different Zones of a High-Lift Low-Pressure Turbine Blade
,”
ASME J. Turbomach.
,
138
(
1
), p.
011003
.
18.
Cui
,
J.
,
Nagabhushana Rao
,
V.
, and
Tucker
,
P. G.
,
2015
, “
Numerical Investigation of Secondary Flows in a High-Lift Low Pressure Turbine
,”
8th International Symposium Turbulence Heat and Mass Transfer
, pp.
1
9
.
19.
Smagorinsky
,
J.
,
1963
, “
General Circulation Experiments With the Primitive Equations
,”
Mon. Weather Rev.
,
91
(
3
), mar, pp.
99
164
.
20.
Germano
,
M.
,
Piomelli
,
U.
,
Moin
,
P.
, and
Cabot
,
W. H.
,
1991
, “
A Dynamic Subgrid-Scale Eddy Viscosity Model
,”
Phys. Fluids A Fluid Dyn.
,
3
(
7
), p.
1760
.
21.
Nicoud
,
F.
, and
Ducros
,
F.
,
1999
, “
Subgrid-Scale Stress Modelling Based on the Square of the Velocity Gradient Tensor
,”
Flow, Turbul. Combust.
,
62
(
3
), pp.
183
200
.
22.
Nicoud
,
F.
,
Toda
,
H. B.
,
Cabrit
,
O.
,
Bose
,
S.
, and
Lee
,
J.
,
2011
, “
Using Singular Values to Build a Subgrid-Scale Model for Large Eddy Simulations
,”
Phys. Fluids
,
23
(
8
), pp.
1
35
.
23.
Lund
,
T. S.
,
Wu
,
X.
, and
Squires
,
K. D.
,
1998
, “
Generation of Turbulent Inflow Data for Spatially-Developing Boundary Layer Simulations
,”
J. Comput. Phys.
,
140
(
2
), pp.
233
258
.
24.
Spalart
,
P. R.
,
1988
, “
Direct Simulation of a Turbulent Boundary Layer up to Rθ = 1410
,”
J. Fluid Mech.
,
187
, pp.
61
98
.
25.
Rogallo
,
R. S.
,
1981
, “
Numerical Experiments in Homogeneous Turbulence
,”
NASA Ames Research Center
, Moffett Field, CA, Technical Report No. NASA-TM- 81315.
26.
Denton
,
J.
, and
Pullan
,
G.
,
2012
, “
A Numerical Investigation Into the Sources of Endwall Loss in Axial Flow Turbines
,”
ASME
Paper No. GT2012-69173.
27.
Zlatinov
,
M. B.
,
Sooi Tan
,
C.
,
Montgomery
,
M.
,
Islam
,
T.
, and
Harris
,
M.
,
2012
, “
Turbine Hub and Shroud Sealing Flow Loss Mechanisms
,”
ASME J. Turbomach.
,
134
(
6
), p.
061027
.
You do not currently have access to this content.