Previous work has shown that low-stagger contouring near the endwall of a nominally high-lift and high-stagger angle front-loaded low-pressure turbine (LPT) airfoil is successful in reducing endwall loss by limiting the development and migration of low momentum fluid associated with secondary flow structures. The design modification that leads to loss reduction in that study was determined from an intuitive approach based on the premise that reducing flow separation near the endwall will lead to reduced loss production. Those authors also relied heavily upon Reynolds-averaged Navier–Stokes (RANS) based computational tools. Due to uncertainties inherent in computational fluid dynamics (CFD) predictions, there is little confidence that the authors actually achieved true minimum loss. Despite recent advances in computing capability, turbulence modeling remains a shortcoming of modern design tools. As a contribution to overcoming this problem, this paper offers a three-dimensional (3D) view of the developing mean flow, total pressure, and turbulence fields that gave rise to the loss reduction of the airfoil mentioned above. Experiments are conducted in a linear cascade with aspect ratio of 3.5 and Re = 100,000. The results are derived from stereoscopic particle image velocimetry (PIV) and total pressure measurements inside the passage. Overall, the loss reduction correlates strongly with reduced turbulence production. The aim of this paper is to provide readers with a realistic view of mean flow and turbulence development that include all the components of the Reynolds stress tensor to assess, at least qualitatively, the validity of high fidelity computational tools used to calculate turbine flows.

References

1.
Kacker
,
S. C.
, and
Okapuu
,
U.
,
1982
, “
A Mean Line Prediction Method for Axial Flow Turbine Efficiency
,”
ASME J. Eng. Power
,
104
(
1
), pp.
111
119
.
2.
Sharma
,
O. P.
, and
Butler
,
T. L.
,
1987
, “
Predictions of Endwall Losses and Secondary Flows in Axial Flow Turbine Cascades
,”
ASME J. Turbomach.
,
109
(
2
), pp.
229
236
.
3.
Benner
,
M. W.
,
Sjolander
,
S. A.
, and
Moustapha
,
S. H.
,
2006
, “
An Empirical Prediction Method for Secondary Losses in Turbines—Part II: A New Secondary Loss Correlation
,”
ASME J. Turbomach.
,
128
(
2
), pp.
281
291
.
4.
Wilcox
,
D. C.
,
1998
,
Turbulence Modeling for CFD
, 2nd ed.,
DCW Industries
,
La Cañada, CA
.
5.
Moore
,
J.
,
Shaffer
,
D. M.
, and
Moore
,
J. G.
,
1987
, “
Reynolds Stresses and Dissipation Mechanisms Downstream of a Turbine Cascade
,”
ASME J. Turbomach.
,
109
(
2
), pp.
258
267
.
6.
Hinze
,
J. O.
,
1975
,
Turbulence
, 2nd ed.,
McGraw Hill
,
New York
.
7.
MacIsaac
,
G. D.
,
Sjolander
,
S. A.
, and
Praisner
,
T. J.
,
2012
, “
Measurements of Losses and Reynolds Stresses in the Secondary Flow Downstream of a Low-Speed Linear Turbine Cascade
,”
ASME J. Turbomach.
,
134
(
6
), p.
061015
.
8.
Gregory-Smith
,
D. G.
,
Walsh
,
J. A.
,
Graves
,
C. P.
, and
Fulton
,
K. P.
,
1988
, “
Turbulence Measurements and Secondary Flows in a Turbine Rotor Cascade
,”
ASME J. Turbomach.
,
110
(
4
), pp.
479
485
.
9.
MacIsaac
,
G. D.
, and
Sjolander
,
S. A.
,
2011
, “
Anisotropic Eddy Viscosity in the Secondary Flow of a Low-Speed Linear Turbine Cascade
,”
ASME
Paper No. GT2011-45578.
10.
Sangston
,
K.
,
Little
,
J.
,
Lyall
,
M. E.
, and
Sondergaard
,
R.
,
2014
, “
Endwall Loss Reduction of High Lift Low Pressure Turbine Airfoils Using Profile Contouring—Part II: Validation
,”
ASME J. Turbomach.
,
136
(
8
), p.
081006
.
11.
Kline
,
S. J.
, and
McClintock
,
F. A.
,
1953
, “
Describing Uncertainties in Single Sample Experiments
,”
J. Mech. Eng.
,
75
(1), pp.
3
8
.
12.
Weiss
,
A. P.
, and
Fottner
,
L.
,
1995
, “
The Influence of Load Distribution on Secondary Flow in Straight Turbine Cascades
,”
ASME J. Turbomach.
,
117
(
1
), pp.
133
141
.
13.
Zoric
,
T.
,
Popovic
,
I.
,
Sjolander
,
S. A.
,
Praisner
,
T.
, and
Grover
,
E.
,
2007
, “
Comparative Investigation of Three Highly Loaded LP Turbine Airfoils: Part I—Measured Profile and Secondary Losses at Design Incidence
,”
ASME
Paper No. GT2007-27537.
14.
Praisner
,
T. J.
,
Grover
,
E. A.
,
Knezevici
,
D. C.
,
Popovic
,
I.
,
Sjolander
,
S. A.
,
Clark
,
J. P.
, and
Sondergaard
,
R.
,
2008
, “
Toward the Expansion of Low-Pressure-Turbine Airfoil Design Space
,”
ASME
Paper No. GT2008-50898.
15.
Knezevici
,
D. C.
,
Sjolander
,
S. A.
,
Praisner
,
T. J.
,
Allen-Bradley
,
E.
, and
Grover
,
E. A.
,
2009
, “
Measurements of Secondary Losses in a High-Lift Front-Loaded Turbine Cascade With the Implementation of Non-Axisymmetric Endwall Contouring
,”
ASME
Paper No. GT2009-59677.
16.
Hodson
,
H. P.
, and
Dominy
,
R. G.
,
1987
, “
The Off-Design Performance of a Low-Pressure Turbine Cascade
,”
ASME J. Turbomach.
,
109
(
2
), pp.
201
209
.
17.
Lyall
,
M. E.
,
Clark
,
J. P.
,
King
,
P. I.
, and
Sondergaard
,
R.
,
2014
, “
Endwall Loss Reduction of High Lift Low Pressure Turbine Airfoils Through Use of Profile Contouring—Part I: Airfoil Design
,”
ASME J. Turbomach.
,
136
(
8
), p.
081005
.
18.
Benedict
,
L.
, and
Gould
,
R.
,
1996
, “
Towards Better Uncertainty Estimates for Turbulence Statistics
,”
Exp. Fluids
,
22
(
2
), pp.
129
136
.
19.
Lyall
,
M. E.
,
2012
, “
Effects of Front-Loading and Stagger Angle on Endwall Losses of High Lift Low Pressure Turbine Vanes
,”
Ph.D. dissertation
, Air Force Institute of Technology, Wright-Patterson AFB, OH.
20.
Harrison
,
S.
,
1990
, “
Secondary Loss Generation in a Linear Cascade of High-Turning Turbine Blades
,”
ASME J. Turbomach.
,
112
(
4
), pp.
618
624
.
21.
Langston
,
L. S.
,
2001
, “
Secondary Flows in Axial Turbines—A Review
,”
Ann. N. Y. Acad. Sci.
,
934
, pp.
11
26
.
22.
Muth
,
B.
, and
Neihuis
,
R.
,
2012
, “
Axial Loss Development in Low Pressure Turbine Cascades
,”
ASME
Paper No. GT2012-69726.
23.
Adrian
,
R.
,
Christensen
,
K.
, and
Liu
,
Z.
,
2000
, “
Analysis and Interpretation of Instantaneous Turbulent Velocity Fields
,”
Exp. Fluids
,
29
(3), pp.
275
290
.
24.
Harvey
,
N. W.
,
Rose
,
M. G.
,
Taylor
,
M. D.
,
Shahpar
,
S.
,
Hartland
,
J.
, and
Gregory-Smith
,
D. G.
,
2000
, “
Non-Axisymmetric Turbine Endwall Design—Part I: Three-Dimensional Linear Design System
,”
ASME J. Turbomach.
,
122
(
2
), pp.
278
285
.
You do not currently have access to this content.