An accurate characterization of rotating stall in terms of inception modality, flow structures, and stabilizing force is one of the key goals for high-pressure centrifugal compressors. The unbalanced pressure field that is generated within the diffuser can be in fact connected to a non-negligible aerodynamic force and then to the onset of detrimental subsynchronous vibrations, which can prevent the machine from operating beyond this limit. An inner comprehension on how the induced flow pattern in these conditions affects the performance of the impeller and its mechanical stability can therefore lead to the development of a more effective regulation system able to mitigate the effects of the phenomenon and extend the left-side margin of the operating curve. In the present study, a 3D-unsteady computational fluid dynamics (CFD) approach was applied to the simulation of a radial stage model including the impeller, the vaneless diffuser, and the return channel. Simulations were carried out with the TRAF code of the University of Florence. The tested rotor was an industrial impeller operating at high peripheral Mach number, for which unique experimental pressure measurements, including the spatial reconstruction of the pressure field at the diffuser inlet, were available. The comparison between experiments and simulations showed a good matching and corroborated the CFD capabilities in correctly describing also some of the complex unsteady phenomena taking place in proximity of the left margin of the operating curve.

References

References
1.
Sorokes
,
J. M.
, and
Marshall
,
D. F.
,
2000
, “
A Review of Aerodynamically Induced Forces Acting on Centrifugal Compressors, and Resulting Vibration Characteristics of Rotors
,”
29th Turbomachinery Symposium
, Houston, TX, Sept. 18–21, pp.
263
280
.
2.
Kita
,
M.
,
Iwamoto
,
S.
,
Kiuchi
,
I.
, and
Kawashita
,
R.
,
2008
, “
Prediction of Subsynchronous Rotor Vibration Amplitude Caused by Rotating Stall
,”
38th Turbomachinery Symposium
, Houston, TX, Sept. 8–11, pp.
97
102
.
3.
Evans
,
B. F.
, and
Smalley
,
A. J.
,
1984
, “
Subsynchronous Vibrations in a High Pressure Centrifugal Compressor: A Case History
,”
Report No. NASA CP-2338
.
4.
Biliotti
,
D.
,
Bianchini
,
A.
,
Ferrara
,
G.
,
Ferrari
,
L.
,
Belardini
,
E.
,
Giachi
,
M.
,
Tapinassi
,
L.
, and
Vannini
,
G.
,
2015
, “
Analysis of the Rotordynamic Response of a Centrifugal Compressor Subject to Aerodynamic Loads Due to Rotating Stall
,”
ASME J. Turbomach.
,
137
(
2
), p.
021002
.
5.
Ferrara
,
G.
,
Ferrari
,
L.
, and
Baldassarre
,
L.
,
2004
, “
Rotating Stall in Centrifugal Compressor Vaneless Diffuser: Experimental Analysis of Geometrical Parameters Influence on Phenomenon Evolution
,”
Int. J. Rotating Mach.
,
10
(
6
), pp.
433
442
.
6.
Frigne
,
P.
, and
Van den Braembussche
,
R. A.
,
1982
, “
Comparative Study of Subsynchronous Rotating Flow Patterns in Centrifugal Compressors With Vaneless Diffusers
,”
Report No. NASA CP-2250
.
7.
Bianchini
,
A.
,
Biliotti
,
D.
,
Ferrara
,
G.
,
Ferrari
,
L.
,
Belardini
,
E.
,
Giachi
,
M.
, and
Tapinassi
,
L.
,
2014
, “
Some Guidelines for the Experimental Characterization of Vaneless Diffuser Rotating Stall in Stages of Industrial Centrifugal Compressors
,”
ASME
Paper No. GT2014-26401.
8.
Bently
,
D. E.
,
Goldman
,
P.
, and
Yuan
,
J.
,
2001
, “
Rotor Dynamics of Centrifugal Compressors in Rotating Stall
,”
Orbit Mag.
,
2Q01
, pp.
40
50
.
9.
Bianchini
,
A.
,
Biliotti
,
D.
,
Ferrara
,
G.
,
Ferrari
,
L.
,
Belardini
,
E.
,
Giachi
,
M.
,
Tapinassi
,
L.
, and
Vannini
,
G.
,
2013
, “
A Systematic Approach to Estimate the Impact of the Aerodynamic Force Induced by Rotating Stall in a Vaneless Diffuser on the Rotordynamic Behavior of Centrifugal Compressors
,”
ASME J. Eng. Gas Turbines Power
,
135
(
11
), p.
112502
.
10.
Jansen
,
W.
,
1964
, “
Rotating Stall in a Radial Vaneless Diffuser
,”
ASME J. Basic Eng.
,
86
(
4
), pp.
750
758
.
11.
Senoo
,
Y.
, and
Kinoshita
,
Y.
,
1977
, “
Influence of Inlet Flow Conditions and Geometries of Centrifugal Vaneless Diffuser on Critical Flow Angle for Reverse Flow
,”
ASME J. Fluids Eng.
,
99
(
1
), pp.
98
103
.
12.
Senoo
,
Y.
,
Kinoshita
,
Y.
, and
Ishida
,
M.
,
1977
, “
Asymmetric Flow in Vaneless Diffusers of Centrifugal Blowers
,”
ASME J. Fluids Eng.
,
99
(
1
), pp.
104
113
.
13.
Abdelhamid
,
A. N.
,
1983
, “
Effects of Vaneless Diffuser Geometry on Flow Instability in Centrifugal Compression Systems
,”
ASME
Paper No. 81-GT-10.
14.
Ferrara
,
G.
,
Ferrari
,
L.
,
Mengoni
,
C. P.
,
De Lucia
,
M.
, and
Baldassarre
,
L.
,
2002
, “
Experimental Investigation and Characterization of the Rotating Stall in a High Pressure Centrifugal Compressor—Part I: Influence of Diffuser Geometry on Stall Inception
,”
ASME
Paper No. GT2002-30389.
15.
Ferrara
,
G.
,
Ferrari
,
L.
,
Mengoni
,
C. P.
,
De Lucia
,
M.
, and
Baldassarre
,
L.
,
2002
, “
Experimental Investigation and Characterization of the Rotating Stall in a High Pressure Centrifugal Compressor—Part II: Influence of Diffuser Geometry on Stage Performance
,”
ASME
Paper No. GT2002-30390.
16.
Cellai
,
A.
,
Ferrara
,
G.
,
Ferrari
,
L.
,
Mengoni
,
C. P.
, and
Baldassarre
,
L.
,
2003
, “
Experimental Investigation and Characterization of the Rotating Stall in a High Pressure Centrifugal Compressor—Part III: Influence of Diffuser Geometry on Stall Inception and Performance (2nd Impeller Tested)
,”
ASME
Paper No. GT2003-38390.
17.
Cellai
,
A.
,
Ferrara
,
G.
,
Ferrari
,
L.
,
Mengoni
,
C. P.
, and
Baldassarre
,
L.
,
2003
, “
Experimental Investigation and Characterization of the Rotating Stall in a High Pressure Centrifugal Compressor—Part IV: Impeller Influence on Diffuser Stability
,”
ASME
Paper No. GT2003-38394.
18.
Ferrara
,
G.
,
Ferrari
,
L.
, and
Baldassarre
,
L.
,
2006
, “
Experimental Investigation of Vaneless Diffuser Rotating Stall—Part V: Influence of Diffuser Geometry on Stall Inception and Performance (3rd Impeller Tested)
,”
ASME
Paper No. GT2006-90693.
19.
Carnevale
,
E. A.
,
Ferrara
,
G.
,
Ferrari
,
L.
, and
Baldassarre
,
L.
,
2006
, “
Experimental Investigation of Vaneless Diffuser Rotating Stall—Part VI: Reduction of Three Impeller Results
,”
ASME
Paper No. GT2006-90694.
20.
Kobayashi
,
H.
,
Nishida
,
H.
,
Takagi
,
T.
, and
Fukoshima
,
Y.
,
1990
, “
A Study on the Rotating Stall of Centrifugal Compressors—Effect of Vaneless Diffuser Inlet Shape on Rotating Stall
,”
Trans. Jpn. Soc. Mech. Eng., B
,
56
(
529
), pp.
98
103
.
21.
Nishida
,
H.
,
Kobayashi
,
H.
,
Takagi
,
T.
, and
Fukoshima
,
Y.
,
1988
, “
A Study on the Rotating Stall of Centrifugal Compressors—Effect of Vaneless Diffuser Width on Rotating Stall
,”
Trans. Jpn. Soc. Mech. Eng., B
,
54
(
499
), pp.
589
594
.
22.
Japikse
,
D.
,
1996
,
Centrifugal Compressor Design and Performance
,
Concepts ETI Publishing
,
Wilder, VT
.
23.
Bianchini
,
A.
,
Biliotti
,
D.
,
Rubino
,
D. T.
,
Ferrari
,
L.
, and
Ferrara
,
G.
,
2015
, “
Experimental Analysis of the Pressure Field Inside a Vaneless Diffuser From Rotating Stall Inception to Surge
,”
ASME J. Turbomach.
,
137
(
11
), p.
111007
.
24.
Colding-Jorgensen
,
J.
,
1980
, “
Effect of Fluid Forces on Rotor Stability of Centrifugal Compressors and Pumps
,”
Instability Problems in High-Performance Turbomachinery
, NASA Lewis Research Center Rotordynamics, Cleveland, OH, pp.
249
265
.
25.
Turunen-Saaresti
,
T.
,
2004
, “
Computational and Experimental Analysis of Flow Field in the Diffusers of Centrifugal Compressors
,”
Ph.D. thesis
, Lappeenranta University of Technology, Lappeenranta, Finland.
26.
Treutz
,
G.
,
2004
, “
Numerische Simulation der instationären Strömung in einer Kreiselpump
,” Ph.D. thesis, Darmstadt University of Technology, Darmstadt, Germany.
27.
Hillewaert
,
K.
, and
Van den Braembussche
,
R. A.
,
1999
, “
Numerical Simulation of Impeller-Volute Interaction in Centrifugal Compressors
,”
ASME J. Turbomach.
,
121
(
3
), pp.
603
608
.
28.
Lucius
,
A.
, and
Brenner
,
G.
,
2011
, “
3D Time Accurate CFD Simulations of a Centrifugal Compressor
,”
Parallel Computational Fluid Dynamics 2008
(Lecture Notes in Computational Science and Engineering, Vol.
74
),
Springer
,
Berlin
, pp.
173
180
.
29.
Kang
,
S.
, and
Hirsch
,
C.
,
2001
, “
Numerical Simulation and Theoretical Analysis of the 3D Viscous Flow in Centrifugal Impellers
,”
Task Q.
,
5
(
4
), pp.
433
458
.
30.
Ljevar
,
S.
,
De Lange
,
H. C.
, and
Van Steenhoven
,
A. A.
,
2006
, “
Two-Dimensional Rotating Stall Analysis in a Wide Vaneless Diffuser
,”
Int. J. Rotating Mach.
,
2006
, p.
56420
.
31.
Arnone
,
A.
,
1994
, “
Viscous Analysis of Three–Dimensional Rotor Flow Using a Multigrid Method
,”
ASME J. Turbomach.
,
116
(
3
), pp.
435
445
.
32.
Arnone
,
A.
,
Liou
,
M. S.
, and
Povinelli
,
L. A.
,
1995
, “
Integration of Navier–Stokes Equations Using Dual Time Stepping and a Multigrid Method
,”
AIAA J.
,
33
(
6
), pp.
985
990
.
33.
Jameson
,
A.
,
1991
, “
Time Dependent Calculations Using Multigrid With Applications to Unsteady Flows Past Airfoils and Wings
,”
AIAA
Paper No. 91-1596.
34.
Spalart
,
P. R.
, and
Allmaras
,
S. R.
,
1994
, “
A One–Equation Turbulence Model for Aerodynamic Flows
,”
Rech. Aérosp.
,
1
, pp.
5
21
.
35.
Spalart
,
P. R.
, and
Shur
,
M.
,
1997
, “
On the Sensitization of Turbulence Models to Rotation and Curvature
,”
Aerosp. Sci. Technol.
,
1
(
5
), pp.
297
302
.
36.
Shur
,
M. L.
,
Strelets
,
M. K.
,
Travin
,
A. K.
, and
Spalart
,
P. R.
,
2000
, “
Turbulence Modeling in Rotating and Curved Channels: Assessing the Spalart-Shur Correction
,”
AIAA J.
,
38
(
5
), pp.
784
792
.
37.
Marconcini
,
M.
,
Rubechini
,
F.
,
Arnone
,
A.
, and
Ibaraki
,
S.
,
2008
, “
Numerical Investigation of a Transonic Centrifugal Compressor
,”
ASME J. Turbomach.
,
130
(
1
), p.
011010
.
38.
Marconcini
,
M.
,
Rubechini
,
F.
,
Arnone
,
A.
, and
Ibaraki
,
S.
,
2010
, “
Numerical Analysis of the Vaned Diffuser of a Transonic Centrifugal Compressor
,”
ASME J. Turbomach.
,
132
(
4
), p.
041012
.
39.
Rubechini
,
F.
,
Marconcini
,
M.
,
Arnone
,
A.
,
Del Greco
,
A. S.
, and
Biagi
,
R.
,
2013
, “
Special Challenges in the Computational Fluid Dynamics Modeling of Transonic Turbo-Expanders
,”
ASME J. Eng. Gas Turbines Power
,
135
(
10
), p.
102701
.
40.
Giovannini
,
M.
,
Marconcini
,
M.
,
Arnone
,
A.
, and
Dominguez
,
A.
,
2015
, “
A Hybrid Parallelization Strategy of a CFD Code for Turbomachinery Applications
,”
11th European Turbomachinery Conference
, Madrid, Spain, Mar. 23–27, Paper No. ETC2015-188.
41.
Marconcini
,
M.
,
Rubechini
,
F.
,
Arnone
,
A.
,
Del Greco
,
A. S.
, and
Biagi
,
R.
,
2012
, “
Aerodynamic Investigation of a High Pressure Ratio Turbo-Expander for Organic Rankine Cycle Applications
,”
ASME
Paper No. GT2012-69409.
42.
Gopinath
,
A. K.
,
2007
, “
Efficient Fourier-Based Algorithms for Time-Periodic Unsteady Problems
,”
Ph.D. thesis
, Stanford University, Stanford, CA.
43.
Trébinjac
,
I.
,
Benichou
,
E.
, and
Buffaz
,
N.
,
2015
, “
Full-Annulus Simulation of the Surge Inception in a Transonic Centrifugal Compressor
,”
J. Therm. Sci.
,
24
(
5
), pp.
442
451
.
You do not currently have access to this content.